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ABSTRACT

Mielityinen, Markku

A Study of Spatial Correlations with an Application in Paper Science

Jyväskylä: University of Jyväskylä, 2006, 119 p.

Finnish summary

In this study our concern is to contemplate spatial correlations and their applica-

tions in a real world setting. The objective is to evaluate different approaches that

are commonly used in this problem area and, as it becomes necessary, to develop im-

proved methodology that is able to meet the needs of applications. In this respect we

propose a new spatial correlation measure that qualifies and quantifies the amount of

dependency between two images that are generated by a spatial stochastic process.

This correlation measure provides a robust and geometrically interpretable alterna-

tive to the standard tools that are currently used in spatial statistics. For evaluation

purposes, the proposed methodology is implemented on a computer platform and

an example data analysis is performed on measurement images that originate from

paper industry.

Keywords: spatial correlations, stochastic processes, exploratory data analysis,

spatial statistics, stochastic geometry, dependencies between paper

properties
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1 INTRODUCTION

The concern of this thesis is to develop and to evaluate a methodology for

detecting and measuring spatial dependencies between real world images. These

images are often generated by mutually dependent random processes. A natural

source for such images is in manufacturing industry where product quality is assessed

through visual observations. In this thesis we use paper measurement images as an

example of how to employ the proposed methodology on a real world application.

In this chapter we give an introduction to the thesis. First we motivate the

reader by presenting our assignment from the paper making industry. Then we

explain how a paper measurement image is studied and how dependencies between

paper measurement images are analyzed in this thesis. After that we discuss about

the challenges that we are going to face in our analysis. The remainder of the chapter

presents a taxonomy of the thesis and some words are dedicated to specifying the

author’s contribution. The chapter is concluded with a discussion on how the the

thesis relates to its respective research field.

1.1 Assignment from the paper making industry

The paper making industry has decades of history in quality assessment during

which many techniques have been developed for measurement of paper structure.

The analysis of the measurements in terms of product quality is still based on

simple methods. In fact, many measurements are inspected visually, which is

mostly due to lack of a systematic analyzing methodology. This has prevented

the industry from enjoying the full benefits that these measurements have to of-

fer. Detailed surveys on paper research are available in the literature; for an intro-

duction we refer the reader to browse (Mark, Habeger, Borch and Lyne 2002) and

(Borch, Lyne, Mark and Habeger 2002).

Our experimental data set comes from an industrial partner. This data set con-

tains two dimensional measurements of four paper sheets from smooth and rough

paper types. From each sheet we have measurements of surface topography, which is

measured on both sides of a paper sheet, and of mass distribution, which commonly

is referred as formation in paper industry. From these measurements we are able

to derive computational measurements for thickness and density distributions. The

measured area is a 10cm× 10cm square region that is measured with approximately

0.1mm resolution yielding 1024× 1024 pixels images. The employed resolution is

not enough to identify individual fibers but it does identify fiber clusters, which

are sometimes referred as flocks in paper making. An illustration of the imple-

mented experiment and examples of obtained measurements are presented in Figure

1. Whereas there are obvious dependencies between the measured paper properties,

observable even with a naked eye, the structures in them seem complex and ran-

dom to say the least. Later in the thesis we will show that this randomness follows
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Background topography Foreground topography Mass distribution Thickness distribution Density distribution

FIGURE 1: Our empirical data set. Four paper sheets of smooth and rough paper

types have been measured to gain 1024× 1024 pixels images from background and

foreground topographies along with mass, thickness, and density distributions of the

same 10cm× 10cm paper area.

approximately the stochastic laws of Gaussian Random Fields (GRF).

In this thesis we use the described data set to carry out the following assign-

ments:

• A comparison of different measuring techniques. Consider that we

have a paper sheet, and from this sheet we have images of five different paper

properties. How much do these images have in common? More explicitly what

is the joint information content of these images? Are there paper properties

that approximately tell the same story and hence we can just measure one of

them and still get approximately the same information?

• A comparison of different paper sheets. Consider that we have four

paper sheets from smooth and rough paper types, and from these sheets we

have images of the same paper property. What are the similarities between

papers of the same type and what are the distinguishing dissimilarities between

papers of the two types? Are these similarities and dissimilarities consistent

over the five measured paper properties or if not what are the properties that
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best highlight the similarities and the dissimilarities?

Successful completion of the assignments involves design, implementation and em-

ployment of techniques that range from computer vision to spatial data analysis.

1.2 How a paper measurement image is studied in this thesis

The images that we have are two dimensional projections of paper structure: fore-

ground and background topographies along with mass, thickness, and density distri-

butions. Let us say that we measure the paper at some point (x, y) and thus obtain

a measurement value z(x, y) that we call a pixel. These pixels are quantified with

8− 24 bits resolution depending on the applied instrument. Sampling such pixels

on a regular lattice domain

D = {(x, y) : x ∈ {1, . . . , wimage}, y ∈ {1, . . . , himage}},

where we have width wimage = 1024 pixels and height himage = 1024 pixels, yields us

a two-dimensional image

m = {z(x, y) : (x, y) ∈ D},

where z(x, y) is the value of the pixel at coordinate (x, y) ∈ D.

The phenomena that we are interested in these images are seen approximately

in 0.1mm− 4.0mm spatial scale. In order to focus on these scales we observe the

phenomena through a random sample of independently and identically distributed

(iid) subimages. In our work we use subimages that have width wlocal pixels and

height hlocal pixels. Let us define a sample domain, which is the domain area from

which wlocal × hlocal pixels subimages can be sampled, as

Dsample =

{⌈
wlocal

2

⌉
, . . . , wimage −

⌈
wlocal

2

⌉}
×

{⌈
hlocal

2

⌉
, . . . , himage −

⌈
hlocal

2

⌉}
,

where we use d·e and b·c operators for rounding up and down respectively. The

subimages are sampled around points

(xi, yi) ∈ Dsample,

where i ∈ Ω = {1, . . . , N} are the indexes of observations. To get a desired sample

of subimages, the points (xi, yi) are taken randomly, independently and identically

distributed according to a uniform distribution over Dsample. These points are then

used as pivot points for a local domain

Dlocal =

{
1−

⌈
wlocal

2

⌉
, . . . , wlocal −

⌈
wlocal

2

⌉}
×

{
1−

⌈
hlocal

2

⌉
, . . . , hlocal −

⌈
hlocal

2

⌉}
,

which defines the spatial extent of the observation, to define observation subdomains

as

Di = {(xi + x, yi + y) : (xi, yi) ∈ Dsample, (x, y) ∈ Dlocal}.
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Because all the subdomains Di ⊂ D are proper subsets of the domain D, we can use

these subdomains to define subimages

Mi = {z(x, y) : (x, y) ∈ Di}

that give local descriptions of the paper around the pivoting points (xi, yi). The

randomness and the independence of the points (xi, yi) ensure that the observed

subimages Mi are also random and independent. Assuming that the studied images

are stationary, the observed subimages Mi are also identically distributed according

to an unknown subimage distribution that we try to evaluate empirically. Satisfy-

ing these three statistical principles ensures that we can make statistically found

inference over the subimages. In empirical studies we use realizations mi that are

sampled around fixed pivot points.

The pixel representation of a subimage consumes wlocal × hlocal scalars of storage

space. Sometimes it is possible to move to a more interpretable and computationally

efficient representation by using a feature function φ to describe the subimage content

with a single but well characterizing scalar value. Such scalar values are called

features

fi = φ(mi),

where i indicates that we give a description of the image around point (xi, yi). It

is common practice to use more than one feature function at the same time and we

use a vector function φ to simultaneously map a subimage to d features that are

stored as elements of a d-dimensional feature vector

fi =




fi,1
...

fi,d


 = φ(mi) =




φ1(mi)
...

φd(mi)


 .

It is mathematically convenient to stack these feature vectors as rows of a feature

matrix

F =




fT
1
...

fT
N


 =




f1,1 . . . fi,d
...

. . .
...

fN,1 . . . fN,d


 =




φ1(m1) . . . φd(m1)
...

. . .
...

φ1(mN) . . . φd(mN)


 ,

where each row represents the observations that are made from a particular subim-

age.

From a statistical point of view we can consider an image pixel z(x, y) as a sam-

ple from a random variable Z(x, y). Similarly an image z = {z(x, y) : (x, y) ∈ D}
is seen as a realization from a generating process Z = {Z(x, y) : (x, y) ∈ D}. In

chapter 5 we show that preprocessed paper measurement images, at least the ones

that we study in this thesis, are approximately stationary Gaussian. Thus we can

assume second-order stationarity, which means that the expectation and the co-

variance structure of the generating process are both translation invariant over the
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domain. That is, pairs of points that are some arbitrary transition (tx, ty) apart

have

E[Z(x + tx, y + ty)] = E[Z(x, y)] = µ for all (x + tx, y + ty), (x, y) ∈ D,

and

Cov[Z(x + tx, y + ty), Z(x, y)] = C(tx, ty) for all (x + tx, y + ty), (x, y) ∈ D.

A stationary covariance function C, which is also known as a covariogram, depends

only on the transition (tx, ty). In this thesis we use words image and realization from

a random field interchangeably depending on the presentation context. Similarly

terms generating process, stochastic process, and random field all refer to a two

dimensional stationary Gaussian random field.

All the notation that is presented above has focused on studying one image at

a time. In this thesis we study interconnections between multiple images and hence

we prefix all variable superscripts with paper property indexes a, b, c, . . . ∈ P where

P = {background, foreground, mass, thickness, density}
for background topography, foreground topography, mass distribution, thickness

distribution, and density distribution respectively. For a property a we write

the measured image as ma = {za(x, y) : (x, y) ∈ D}, the random subimages as

Ma
i = {za(x, y) : (x, y) ∈ Di} and their realizations as ma

i , the feature vectors as fa
i ,

the feature matrix as Fa, and the generating process as Za = {Za(x, y) : (x, y) ∈ D}.
The domain D, the sample domain Dsample, the pivot points (xi, yi), the local do-

main Dlocal, and the subdomains Di are shared between all the paper properties and

hence no superscript prefixing is needed.

1.3 How dependencies between paper measurement images

are studied in this thesis

In this thesis we study three types of spatial correlation: the correlation between

random point measurements Za(x, y) and Zb(x, y), the correlation between random

local area measurements Ma
i and M b

i , and the second-order spatial correlation be-

tween random point measurements Za(x + tx, y + ty) and Zb(x, y) where (tx, ty) is

a spatial transition.

The most trivial way to evaluate dependency between images ma and mb is

to measure correlation between random point measurements Za(x, y) and Zb(x, y)

with a correlation coefficient

ρa,b = Cor[Za(x, y), Zb(x, y)] where (x, y) ∈ D. (1)

A geometrical interpretation for this correlation coefficient is obtained by plotting

points (za(x, y), zb(x, y)). Whether these points lie on a straight line formation we
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have proof of strong dependency between the images, whereas the opposite case

does not proof that such a dependency cannot exist as this correlation coefficient

is vulnerable to different types of noise. The existing dependency may be hiding

behind obscuring phenomena. An example plot of the dependency between mass

distribution and foreground topography is presented in Figure 2. From this plot we

can see that there is a weak connection between the two paper properties. This con-

nection is however among the strongest between our images and hence this approach

is clearly not sufficient for our purposes.

MASS DISTRIBUTION
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G
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O
U
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O

P
O

G
R

A
P

H
Y

FIGURE 2: Correlation between pixels of mass distribution and foreground topogra-

phy. Each point represents a point measurement of two paper properties. Whereas

the presented dependency between mass distribution and foreground topography

is one of the strongest in our data set, this approach is unable to provide a good

explanation for the dependency between these two paper properties.

Instead of individual point measurements we can enlarge our scope of observa-

tion to measurements of local areas. The correlation between random subimages is

measured with a correlation coefficient

%a,b = Cor[φ̄a({Za(x, y) : (x, y) ∈ Di}), φ̄b({Zb(x, y) : (x, y) ∈ Di})],

where operators φ̄a(·) and φ̄b(·) are special types of feature functions that compress

the information of a subimage into a scalar value in an optimal way. The way

these feature functions are constructed require a careful discussion, for a detailed

discussion on the subject see chapter 3, and is not a subject for this introduction. A

geometrical visualization for this correlation coefficient is gained by plotting points

that represent pairs (φ̄a(ma
i ), φ̄

b(mb
i)). The interpretation for this plot is almost the

same that it is with the correlation between pixels: whether the points lie on a

straight line we have proof of strong dependency between the images, whereas the
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opposite case again does not proof that a dependency does not exist. An example

plot of the dependency between mass distribution and foreground topography is

presented in Figure 3. This is the same case that was previously examined with

the correlation between pixels and thus we can see that in this case the correlation

between subimages is clearly able to outperform the correlation between pixels. This

is because the correlation between subimages is more resilient to different types of

noise. An interesting extension to this idea is to evaluate the amount of correlation

between subimages of different spatial scales. An example plot of correlation between

mass distribution and mass distribution as a function of spatial scale is presented in

Figure 4. According to this plot the amount of correlation seems to increase with

the increasing size of the subimages.
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FIGURE 3: Correlation between subimages of mass distribution and foreground

topography. Each point represents a local area measurement of two paper properties

that are compressed into two scalar values in an optimized way. As we can see the

level of observed dependency is clearly higher than we saw in Figure 2.

Because our image content is approximately stationary Gaussian, we can study

second-order statistical correlations within (a = b) and between (a 6= b) images ma

and mb with a semivariogram function

γa,b(tx, ty) =
1

2
Var[Za(x + tx, y + ty)− Zb(x, y)] where (x + tx, y + ty), (x, y) ∈ D,

(2)

which is also known as a cross-semivariogram function when a 6= b. The semivari-

ogram function measures the amount of dissimilarity between point measurements

Za(x + tx, y + ty) and Zb(x, y), that is pixels of transition (tx, ty) apart. The larger

values the semivariogram function gets at a given transition (tx, ty) the weaker de-

pendency these pixels have. Typically the dependency gets weaker as the transition
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FIGURE 4: Correlation between subimages of mass distribution and foreground

topography as a function of spatial scale. The horizontal axis indicates the width and

the height of the subimages (in millimeters) between which correlation is measured,

and the vertical axis measures the amount of correlation.

becomes larger. A semivariogram function for our example case of mass distribution

and foreground topography is presented in Figure 5. From this plot we can see how

the amount of dependency between the pixels decreases as a function of distance.

FIGURE 5: Cross-semivariogram between foreground topography and mass distri-

bution. The horizontal axis indicates the transition in millimeters between the two

points between which dissimilarity is measured, and the vertical axis indicates the

amount of observed dissimilarity.

The correlation between pixels is an ad hoc solution for measuring spatial depen-

dencies between images. In practice its performance is poor and is of interest merely

as a point of reference to the other more successful methods. The correlation between

subimages is a new dependency measure, which is described in chapter 3. This cor-

relation measure is able to overcome most of the problems of the correlation between

pixels. The second-order spatial correlation is a standard dependency measure in

spatial statistics. This correlation measure is comparable to the correlation between

subimages, approximately the same information is provided in a different form, and

hence it serves as a good point of comparison. For an introduction to second-

order spatial correlations see chapter 2, or (Cressie 1993, p. 40 and pp. 58-104) and

(Cressie and Wikle 1998).
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1.4 Foreseeable challenges

There are foreseeable challenges that we must prepare ourselves to when carrying

out an analysis on the paper measurement images. Here is a list of the five most

important that ones we can think of:

• Spatial distortions. In many cases, and in the case of our paper appli-

cation, the raw images come from independent instruments and thus differ

slightly in the measured paper area and in the employed measurement reso-

lution. To make such images suitable for our methodology they need to be

spatially transformed so that all the pixels that are measured from a particular

paper location are placed at the same pixel coordinate. In the case of our pa-

per application, this transformation is difficult to automate and thus requires

laborious work by hand, which inevitably subjects the obtained results to hu-

man error. The present variation in the employed measurement resolutions

inflict additional errors.

• Measurement noise. Unprocessed images tend to contain random noise

from an unknown distribution. Lack of knowledge on this distribution makes

corrective procedures difficult. A typical solution is to make an educated guess

on the shape of the distribution, and depending on how successful the guess

is, it is usually possible to restore the image very close to its correct condi-

tion. Sometimes the presence of noise is so severe that even the best correction

algorithms cannot remedy the damage and the image becomes unusable. Be-

cause the measurement noise problem is so common in practical applications,

there is an entire field in statistics developing robust version of the classical

methodology that is able to function properly in the presence of measurement

noise.

• Erroneous and missing measurements. Faulty pixels are the most com-

mon reason for a measurement to become unusable. Much depends on the used

instrument as some errors are correctable while other render the measurement

worthless. A chapter of their own are incomplete measurements in which part

of the intended area is in practice not measured at all. In the case of spatial

measurements, there is usually not much to do to compensate such a loss.

• Unknown phenomena. Sometimes measurements contain ambiguous phe-

nomena that cannot be explained. This is especially the case in explorative

data analysis where the sole purpose of the study is to reveal previously un-

known information. For not to miss any relevant pieces of information we

need to include all the ambiguous observations into our analysis , and as a

result many peculiarities find their way into final results. In some sense this is

unavoidable but in the same it is the single largest cause of concern when we

are interpreting our results. It has happened more than one occasion that the

entire interpretation is heavily biased due to such an event.
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• Computational load. High resolution imaging has a way of generating mas-

sive data sets, which again has a direct bearing on computational resources

needed to complete the analysis. A typical data set is likely to consume sev-

eral gigabytes of storage space, an amount considered to be a lot at the time

this thesis was published. Classical methodology is based on heavy algebraic

operations that scale ill to large problems. Typically processing power and

memory demand scale according to second or third order polynomials leaving

all but the smallest problems unsolved. Whereas the computational resources

have been doubling for every 18 months for a long time, the demand is still in-

creasing in even more gigantic steps and thus the methodological development

offers the only viable solution for this problem.

1.5 The contents of this thesis

Chapter 1 introduces our assignment from the paper making industry to motivate

the reader for things to come. First we presented an experiment from which we have

images of five paper properties from eight paper sheets. Then we discussed about

how these images and dependencies between these images are studied in this thesis.

Here we present the taxonomy of the remainder of the thesis and then dedicate some

words to evaluate the author’s contribution to the research field.

Chapter 2 introduces the methodological foundation of our work. We begin

by introducing a general taxonomy for image analysis and then present some image

preprocessing techniques that we later use in our work. Then we introduce statisti-

cal tools for analyzing dependencies between two univariate or multivariate random

variables, and spatial dependencies between two Gaussian random fields. The re-

mainder of the chapter reviews six studies to introduce current research from the

field of paper science.

Chapter 3 presents the proposed methodology in detail. First we contemplate

how to make proper observations from the images and how this affects the developed

methodology. Then we present our strategy for breaking large images into smaller

and more manageable subimages. These subimages are then used to build models of

dependency between two images based on their mutual information. The subimages

are analyzed with canonical correlation analysis (CCA) from which we obtain a set

of mutually dependent visual operator pairs that can be used to detect changes in

paper structure. The remainder of the chapter makes empirical experiments with the

methodology with respect to the challenges that we have in our paper application.

Chapter 4 describes an example implementation of the proposed methodology.

A computer implementation is necessary in order to analyze our application data

and in order to empirically evaluate the proposed methodology. First we present

five design goals and a general system architecture for data analysis. Then we give

a brief description of an example implementation that we use in our own work and

evaluate it through the five design goals that we set in the beginning of the chapter.

Chapter 5 uses our real world application to empirically evaluate the proposed
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methodology. We start by introducing the measurements and then consider the type

of phenomena that we can see in the available images. Each image is then reviewed

and conspicuous phenomena in them are studied in detail. Then we conduct a ten-

tative analysis of the images using standard statistical tools from geostatistics. Here

it turns out that paper images, which seem visually complex, can be characterized

to large extent with parametric Gaussian random field models. The analysis in con-

tinued with our own methodology to identify and explain dependencies between the

five studied paper properties, and to identify dissimilarities between the two studied

paper types. Throughout the analysis we contemplate the obtained results from

both application and methodological perspective. This chapter presents the main

results with respect to our paper application and raises a few new topics for future

research.

Chapter 6 collects the main results and the most important conclusions from

our work.

1.6 Contribution of the author

During the postgraduate years the author has received counseling and assistance

from DrTech Pasi Koikkalainen, the work mentor, and from other members of the

research group: PhD Anssi Lensu, PhD Jouni Raitamäki, MSc Michael Haranen

and MSc Ismo Horppu.

The problem setting and the empirical data set, which were introduced in

chapter 1, were obtained from our partner in cooperation Oy Keskuslaboratorio-

Centrallaboratorium Ab (KCL). On matters regarding this data set the author has

been in regular contact with KCL employees DrTech Erkki Hellén and MSc Pasi

Puukko. Preprocessing of the images required a lot of manual work and hence was

implemented as a collaboration between the author and KCL personnel.

The literature survey, which is presented in chapter 2, has been conducted by

the author under the mentor DrTech Pasi Koikkalainen’s guidance. The presentation

is based on the material that were found from Jyväskylä University Library, from

various online libraries, and from Internet homepages of many individual researchers.

The proposed methodology for detecting and measuring dependencies between

images, which is presented in chapter 3, is a collaboration between the author and

the mentor DrTech Pasi Koikkalainen. With a few aspects of the methodology the

author has gained additional expertise from consultations with Prof Antti Penttinen.

The working environment for the study, which is presented in chapter 4, is based

on an open source project ”The R Project for Statistical Computing”. For additional

information about the R project the reader is referred to (The R Foundation 2005a)

and (The R Foundation 2005b). The design and implementation of the required

extension libraries that are written in C++, and the user interface that is written

in R macro language are the sole products of the author.

The data analysis that is conducted on the paper images, which is presented in

chapter 6, is performed solely by the author. The mentor DrTech Pasi Koikkalainen
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has implemented some part of the analysis on his own and with an another software

platform. The results from these two studies are consistent for the most part and

hence boost our confidence on the validity of the obtained results.

As a final remark, the work mentor DrTech Pasi Koikkalainen has advised the

author on matters of writing and hence has directly influenced the written form of

the thesis.

1.7 Discussion

The assignment from the paper making industry and the proposed methodology that

is used to carry out this assignment fall into a research field that has not received

much attention. We are unaware of parallel studies that would answer the type of

questions that we have in the current paper application. Similarly we are unaware

of other studies that would employ techniques that are analogous to those that

we propose for detecting and measuring spatial dependencies between images that

have stochastic content. Such images are easily obtained from various industrial

manufacturing processes. The studied paper images constitute just an example of

the many possible applications.
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2 INTRODUCTION TO METHODOLOGICAL

FOUNDATION

This chapter provides a review of image analysis and correlations. The ap-

parent richness of information in the paper images, which were introduced in the

previous chapter, and the complexity of the needed analysis lead us to techniques

that are developed in the fields of image analysis and statistics. First we study the

principles of and then learn a few standard techniques from image analysis: geomet-

ric transformation of images, background trend removal from images, noise removal

from images, and image enhancement in the frequency domain. These techniques

are later used for preprocessing in our own data analysis. Then we move on to tech-

niques for measuring correlations: tools from classical statistics, such as correlation

and canonical correlation analysis, and more specific tools from spatial statistics,

such as correlogram and semivariogram. These tools are later used to analyze the

preprocessed content of the studied images. In the remainder of the chapter we re-

view studies from the field of paper science to gain an understanding of the current

state-of-the-art in this field. Finally we conclude the chapter with a discussion.

2.1 An introduction to image analysis

Image analysis consists of large variety of techniques that range from pixel-level

operations, such as noise filtering and feature extraction, to higher-level operations

that come mostly from pattern recognition, such as classification. In practical ap-

plications image analysis divides logically into three relatively independent stages.

These three stages are low-level processing, intermediate-level processing, and high-

level processing (see Figure 6). Although the boundaries between these stages are

not clear and depend on the application context, the presented taxonomy is general

enough to fit most applications of imaging. Whereas there are many detailed tax-

onomies that are presented in the literature, we make use of the one that is presented

in (Gonzales and Woods 1992, pp. 572-573).

Low-level processing consists of image acquisition and image preprocessing,

which are typically performed close to the imaging hardware. The image acqui-

sition contemplates good techniques and settings for imaging, whereas the image

preprocessing considers ways to improve the quality of images. Typical operations

perform mechanical pixel-level processing that correct distortions and emphasize es-

sential information. Characteristic to this stage is having large amount of relatively

unprocessed numerical data without a good understanding of their content. Hence,

the performed operations have to be selected based on some kind of prior information

about the imaging system.

Intermediate-level processing consists of image segmentation and image descrip-

tion that are performed on preprocessed images. The objective is to extract the

studied objects from the background and then to describe them through an alterna-
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FIGURE 6: Taxonomy of image analysis.

tive representation. Whereas intermediate-level operations also work on pixel-level,

their end result is a higher-level representation that characterizes the image content

in a structured manner.

High-level processing involves image recognition and image interpretation based

on the alternative representation that was generated at the previous stage. The two

most common objectives of this stage are to classify the studied objects into pre-

defined classes and to interpret the image content from the application perspective.

The goal is to answer the questions that are posed from the application context.

Typically the employed solutions are heavily application dependent and careful con-

sideration is needed in order to obtain the best functioning system.

2.2 Preprocessing of images

In this section we learn four image preprocessing techniques. The notation that was

introduced in chapter 1 is used for all equations. In addition to that, z(x, y) is the

unprocessed pixel intensity and z′(x, y) is the preprocessed pixel intensity at a pixel

coordinate (x, y) ∈ D.
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2.2.1 Geometric transformation of images

Geometric transformations are standard operations in image analysis. These oper-

ations are often used to correct geometric distortions, such as rotation, scaling, and

skewing. In addition they are used to solve pixel correspondence problems between

images. The ideas that are presented here are commonly known and discussed in

almost all books covering computer vision. From this introduction we learn the gen-

eral idea according to (Sonka, Hlavac and Boyle 1999, pp. 62-68). An alternative

introduction to the subject is available in (Gonzales and Woods 2002, pp. 270-275).

The general idea is to use a geometric transformation function

T(x, y) = (Tx(x, y), Ty(x, y)) to map pixel coordinates (x, y) into new pixel

coordinates (x′, y′) such that

x′ = Tx(x, y) and y′ = Ty(x, y). (3)

A more detailed inspection of practical implementations shows that geometric trans-

formation consists of two basic operations: geometric transformation of pixel coor-

dinates, and interpolation of pixel intensities.

The pixel correspondence structure can be identified based on prior information

about the correspondence. This information comes for example from our knowledge

of the imaging system, from similarities between local image areas, or from special

markers that are used to pinpoint pairs of pixels with known mutual correspondence.

The given list is not complete but gives a rough understanding over the variety

of possibilities. In the case of special markers one formulation for the geometric

transformation of equation 3 is to write

x′ = a0 + a1x + a2y and y′ = b0 + b1x + b2y. (4)

The transformation coefficients a0, a1, a2, and b0, b1, b2 are determined as a solution

to a least squares problem, which is based on N example pairs of coordinates (xi, yi)

and (x′i, y
′
i), where i ∈ {1, . . . , N}. In the case of affine transformations, such as the

one that is formalized in equation 4, at least three example pairs of coordinates are

needed.

In the case that was presented in equation 4, the inferred geometric transfor-

mation T is a continuous function. This means that mapping from integer valued

coordinates (x, y) gives real valued coordinates (x′, y′), which is a problem when

working with the discrete rasters of digital images. A common solution is to ap-

proach the problem so that the pixel intensity at an integer valued coordinate (x′, y′)
is determined through interpolation from intensities of pixels that are close to the

real valued coordinate (x, y). More formally, a bi-cubic interpolation estimate for

the pixel intensity at integer valued coordinate (x′, y′) is written as

z′(x′, y′) =
∑

(sx,sy)∈D

K(x− sx, y − sy)z(sx, sy) (5)
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where K is a bi-cubic interpolation kernel function

K(tx, ty) =





1− 2||(tx, ty)||2 + ||(tx, ty)||3, for 0 ≤ ||(tx, ty)|| < 1

4− 8||(tx, ty)||+ 5||(tx, ty)||2 − ||(tx, ty)||3, for 1 ≤ ||(tx, ty)|| < 2

0, otherwise,

and x = T−1
x (x′, y′) and y = T−1

y (x′, y′). The bi-cubic interpolation estimate that is

presented in equation 5 is not the only viable solution but this estimate has gained

wide acceptance in computer vision due to its good properties.

2.2.2 Background trend removal from images

We typically are interested in phenomena that are seen in some specific spatial scale

and the phenomena outside of this scale are likely to disturb our analysis. Unwanted

phenomena of too large spatial scale, commonly known as image trending problem,

raise from the unfortunate fact that some instruments are unable to produce a

homogeneous measurement of the whole image area. One approach to trend removal

is to build a global model that explains the large scale variation. A commonly

used algorithm for this is median polishing, which is introduced for example in

(Cressie 1993, pp. 46-48 and pp. 183-190). The founding idea behind polishing is

to decompose large scale variation into average, row and column effects. More

formally, there is a position independent average effect za, an x-coordinate dependent

column effect zc(x), and a y-coordinate dependent row effect zr(y) that generate the

background trend

z†(x, y) = za + zc(x) + zr(y) for (x, y) ∈ D.

Whereas these effects are obviously unknown, they can be estimated with the pol-

ishing algorithm that is presented in Table 1. The algorithm begins from a real

world image and iteratively sweeps medians out of rows and then out of columns of

the image until the algorithm converges. The convergence is commonly measured

with the amount of change between iterations and when it becomes small enough

the iterating is stopped. A trend corrected image is then obtained by subtracting

the estimated trend as

z′(x, y) = z(x, y)− z†(x, y).

The choice to use medians to estimate average, column and row effects is wise but

not the only viable option. For a discussion about the merits of different estimates

see the reference that is mentioned above.

2.2.3 Noise removal from images

In real world applications measurements contain noise, which comes from an un-

known distribution that depends on the employed instrument. The most common

type of noise in real world images is additive noise, which is defined as

z(x, y) = ztrue(x, y) + ε(x, y),
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1. Initialize:

(a) za ← 0

(b) zc(x) ← 0 for all x ∈ {1, . . . , wimage}
(c) zr(y) ← 0 for all y ∈ {1, . . . , himage}.

2. Iterate while changes are large enough:

(a) Sweep medians out of columns

i. zc′(x) ← median({z(x′, y) : (x′ = x, y) ∈ D}) for all

x ∈ {1, . . . , wimage}
ii. z(x, y) ← z(x, y)− zc′(x) for all (x, y) ∈ D

iii. zc(x) ← zc(x) + zc′(x) for all x ∈ {1, . . . , wimage}
(b) and adjust the global average

i. zc′′ ← median({zc(x) : x ∈ {1, . . . , wimage}})
ii. zc(x) ← zc(x)− zc′′ for all x ∈ {1, . . . , wimage}
iii. za ← za + zc′′ .

(c) Sweep medians out of rows

i. zr′(y) ← median({z(x, y′) : (x, y′ = y) ∈ D}) for all

y ∈ {1, . . . , himage}
ii. z(x, y) ← z(x, y)− zr′(y) for all (x, y) ∈ D

iii. zr(y) ← zr(y) + zr′(y) for all y ∈ {1, . . . , himage}
(d) and adjust the global average

i. zr′′ ← median({zr(y) : y ∈ {1, . . . , himage}})
ii. zr(y) ← zr(y)− zr′′ for all y ∈ {1, . . . , himage}
iii. za ← za + zr′′ .

3. The algorithmic estimate for the large scale variation is

z†(x, y) = za + zc(x) + zr(y) : (x, y) ∈ D.

TABLE 1: Median polish algorithm (Cressie 1993).

where z(x, y) corresponds to the measured pixel intensity, ztrue(x, y) corresponds to

the true pixel intensity, and ε(x, y) corresponds to the added noise respectively. As

(Gonzales and Woods 2002, pp. 230-242) suggests, spatial filtering is the method of

choice in situations when only additive noise is present. An another introduction to

the subject is in (Sonka, Hlavac and Boyle 1999, pp. 68-77).

One common type of additive noise, which is known as Gaussian noise, has

ε(x, y) independently and identically distributed (iid) from a Gaussian distribution.
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In a real world image this noise shows as an unexplained variation in the areas that

should be displaying a constant pixel intensity. Because the effect of this noise to

pixel intensity is symmetric and spatially uncorrelated, a filter based on smoothing

over a local area of pixel intensities yields an acceptable result. The simplest and the

most commonly applied of such filters is the mean filter. The mean filter replaces the

measured pixel intensity with the average of local area pixel intensities. Formally

the mean filter estimate for the pixel intensity at coordinate (x, y) is written as

z′(x, y) =
1

wlocalhlocal

∑

(sx,sy)∈Dlocal

z(x + sx, y + sy).

An another type of additive noise, which is known as impulse noise or salt-and-

pepper noise, consists of sharp local spikes. In a real world image it shows as grain

like structures having pixel intensities that clearly separate from the surrounding

pixel intensities in a manner that is not consistent with the image content. Whereas

the noise effectively replaces the original pixel intensities in these grains, a filter that

is based on smoothing yields inadequate results. One solution is to use a filter that

is based on the order-statistics of the local area pixel intensities. Of such filters,

the median filter that replaces the measured pixel intensity with the local area pixel

intensity that has rank order bwlocalhlocal/2c among the local area pixel intensities is

the best known. More formally, a median filter estimate for the pixel intensity value

at coordinate (x, y) is written as

z′(x, y) = median({z(x + sx, y + sy) : (sx, sy) ∈ Dlocal}).

2.2.4 Image enhancement in frequency domain

Switching from spatial domain into frequency domain through the Fourier transfor-

mation

Fz(u, v) =

∑wimage

x=1

∑himage

y=1 ((−1)x+yz(x, y))e−2jπ((u−1)(x−1)/wimage+(v−1)(y−1)/himage)

√
wimagehimage

for (u, v) ∈ D, and back through the inverse transform

z(x, y) =
(−1)x+y

∑wimage

u=1

∑himage

v=1 (Fz(u, v))e2jπ((u−1)(x−1)/wimage+(v−1)(y−1)/himage)

√
wimagehimage

for (x, y) ∈ D are one of the most important operations in image preprocessing and

analysis (Gonzales and Woods 2002, pp. 147-214 and pp. 242-253). The multiplier

(−1)x+y is not compulsory but is used to transform the DC peak at power spectrum

|Fz(u, v)|2 from (1, 1) to (wimage/2 + 1, himage/2 + 1), which eases visual interpre-

tation. The decomposition of an image into different frequencies makes it easy to

study various periodic phenomena. From computational perspective, as performing

convolution of images z and h in the spatial domain equals performing multiplication
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of the same images in the frequency domain

(z ? h)(x, y) =
1

wimagehimage

wimage∑
sx=1

himage∑
sy=1

z(x, y)h(x− sx, y − sy)

= F−1(FzFh)(x, y) where (x, y) ∈ D and

(FzFh)(u, v) = Fz(u, v)Fh(u, v) for (u, v) ∈ D.

Convolution theorem provides a fast implementation for large convolution masks. In

addition it is possible to derive new types of filters for which implementations would

be difficult in the spatial domain. Such are the frequency filters that are presented in

the following three paragraphs. For these the filtered image is obtained via inverse

transform

z′(x, y) = F−1(FzFh)(x, y) for (x, y) ∈ D,

where Fh is the employed frequency filter. For mathematical convenience we assume

that N = wimage = himage is a power of two. The corresponding reject filters are

obtained as FhR(u, v) = 1− FhP (u, v).

A lowpass filter allow frequencies that are lower than some given value f to

pass the filter. For mathematical convenience a distance measure from the DC peak

is defined as

dist(u, v) = ||(u−N/2 + 1, v −N/2 + 1)||.

Three of the most common lowpass filters are then formally defined as

FhIL(u, v) =

{
1 if dist(u, v) < f

0 otherwise
for (u, v) ∈ D,

FhBL(u, v|n) =
1

1 +
(dist(u,v)

f

)2n for (u, v) ∈ D, and

FhGL(u, v|σ) = e−dist(u,v)2/2σ for (u, v) ∈ D

for ideal, Butterworth, and Gaussian lowpass filters respectively. Here the filter

parameters f , n and σ define the transfer function of the filter.

A bandpass filter passes frequencies that belong to a certain [f1, f2] frequency

band. Three of the most common bandpass filters are defined as

FhIB(u, v) =

{
1 if f1 ≤ dist(u, v) ≤ f2

0 otherwise
for (u, v) ∈ D,

FhBB(u, v|n) = 1− 1

1 +
( dist(u,v)(f2−f1)

dist(u,v)2−(f1/2+f2/2)2

)2n for (u, v) ∈ D, and

FhGB(u, v) = e
− 1

2

(
dist(u,v)2−(f1/2+f2/2)2

dist(u,v)(f2−f1)

)2

for (u, v) ∈ D
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for ideal, Butterworth, and Gaussian band pass filters respectively. The filter pa-

rameter n functions as previously defined.

A notch pass filter blocks frequencies that are located around some prototype

frequency that is located at (u0, v0) in the two dimensional power spectrum. For

mathematical convenience two additional distance measures, which are symmetric

with respect to the DC peak, are defined as

dist1(u, v|u0, v0) = ||(u−N/2− u0 + 1, v −N/2− v0 + 1)||
dist2(u, v|u0, v0) = ||(u−N/2 + u0 + 1, v −N/2 + v0 + 1)||

along with an arbitrary threshold coefficient size that indicates the size of the filter.

With the help of these the three most common notch pass filters are defined as

FhIN(u, v) =

{
1 if dist1(u, v|u0, v0) ≤ size or dist2(u, v|u0, v0) ≤ size

0 otherwise
for (u, v) ∈ D,

FhBN(u, v) = 1− 1

1 +
(

size2

dist1(u,v|u0,v0),dist2(u,v|u0,v0)

)2n for (u, v) ∈ D, and

FhGN(u, v) = e−
1
2

(
dist1(u,v|u0,v0)dist2(u,v|u0,v0)

size2

)
for (u, v) ∈ D

for ideal, Butterworth, and Gaussian notch pass filters respectively. Again the filter

parameter n functions as previously defined.

The frequency filters that have been presented this far have an effect on all the

pixels of the processed image. This means that those pixels that are unaffected by

the studied periodic pattern are changed unnecessarily, which may lead into loss of

valuable information. This is unfortunate as the filtered periodic pattern may be

confined to only certain image areas leaving most of the pixels unaffected. This is

the case with images showing paper structure where a phenomenon known as wire

is caused by the pattern of the conveyer felt being mechanically superimposed on

the otherwise stochastic pulp distribution (see chapter 5). The wire pattern consists

of a few frequency spikes but is not present throughout the paper and hence a more

intelligent way to remove it is needed.

One possible solution is to use adaptive filtering in which the founding idea is

to use frequency filters to identify a periodic pattern, then bring it back to spatial

domain, and finally remove it only from the affected image pixels. Let us assume

that a frequency filter Fh(u, v) combines the previously presented pass filters such

that taking the inverse transform of FzFh yields an image of the periodic pattern

z†(x, y) = F−1(FzFh)(x, y) for (x, y) ∈ D.

The next step is to estimate a proper spatial weighting zω(x, y) that determines

where this pattern is present and how much of it is present so that for each pixel it

is known how much of the periodic pattern must be subtracted to properly remove
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the pattern. One way to define this weighting is to minimize the local area variance

of the filtered image. For this the weighting

zω(x, y) =
z(x, y)z†(x, y)− z(x, y) z†(x, y)

z†(x, y)z†(x, y)− z†(x, y) z†(x, y)
,

where

z(x, y) =

∑
(sx,sy)∈Dlocal

z(x + sx, y + sy)

wlocalhlocal

is the mean of the local area pixel intensities of image z and the other local area

means are defined in an analogous manner. A filtered image is then obtained by

subtracting the periodic phenomenon as

z
′
(x, y) = z(x, y)− zω(x, y)z†(x, y).

2.2.5 Other image enhancement techniques

Beyond the four presented image preprocessing techniques, there is abundance

of other image enhancement techniques that are presented in the literature;

for an overview see (Gonzales and Woods 2002), (Sonka, Hlavac and Boyle 1999),

(Jain 1988), (Davies 2005), or (Bovik et al. 2000). The image preprocessing require-

ments vary heavily from application to application and depending on the employed

measuring instrument. Hence it is impossible to give an all-inclusive list of the

problems encountered. The presented four problems and their solutions are the

most interesting from our perspective. Even in these the presented solutions are by

no means the only viable options and the reader is encouraged to acquaint himself

with the provided references.

2.3 Analyzing statistical dependencies between two data

sets

In this section we present three techniques for analyzing statistical dependencies

between two data sets. Some of these techniques are later used in the proposed

methodology whereas others are used as a point of reference for a methodological

comparison.

2.3.1 Correlation between two univariate random variables

The best known and the most widely used measure of linear dependency between

two random variables Za and Zb is the correlation coefficient

ρ = Cor[Za, Zb],

which has range [−1, 1]. The interpretation of a correlation coefficient reads as

follows: the sign of the coefficient determines whether the correlation is positive,
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that is if one of the variables becomes larger the other one becomes larger as well, or

negative, that is if one of the variables becomes larger the other one becomes smaller,

whereas the absolute value of the coefficient determines how strong the dependency

is. An absolute coefficient value equal to 0.5 corresponds to 25% of the variation

been explained, equal to 0.7 corresponds to 49% of the variation been explained,

and equal to 1 corresponds to 100% of the variation been explained respectively.

For a sample of observed values za
1 , . . . , z

a
N ∼ Za and zb

1, . . . , z
b
N ∼ Zb, an empir-

ical estimate for the correlation coefficient is obtained from Pearson product moment

correlation estimate that is better known as Pearson’s correlation estimate

ρ̂ =
N

∑N
i=1 za

i z
b
i −

∑N
i=1 za

i

∑N
i=1 zb

i√
N

∑N
i=1

(
za

i

)2 − ( ∑N
i=1 za

i

)2
√

N
∑N

i=1

(
zb

i

)2 − ( ∑N
i=1 zb

i

)2
,

or from Spearman’s rank order correlation estimate that is more commonly known

as Spearman’s correlation estimate

ρ̄ = 1− 6
∑N

i=1

(
rank(za

i )− rank(zb
i )

)2

N(N2 − 1)
,

where the operator rank(·) returns the observation rank order with respect to its

peers. Of the two the Pearson’s estimate is more commonly known and used whereas

the Spearman’s estimate is more robust to errors.

2.3.2 Correlation between two multivariate random variables

Canonical correlation analysis (CCA), which was originally introduced in the early

20th century by Harold Hotelling in (Hotelling 1936), is a multivariate version of

the univariate correlation that we learned above. For two random vectors Za and

Zb, which are of dimensions da and db respectively, CCA produces d = min(da, db)

pairs of canonical vectors

βa
i ,β

b
i for i = 1, . . . , d

and canonical correlations

λi = Cor[(βa
i )

T Za, (βb
i)

T Zb] for i = 1, . . . , d.

The interpretation for CCA reads as follows: a canonical correlation coefficient λi

is interpreted the same way as the linear correlation coefficient with the extension

that now it measures the linear dependency between directions βa
i and βb

i . The

geometrical interpretation is that for realizations za ∼ Za, zb ∼ Zb variation of za

towards direction βa
i has the strongest correlation with the variation of zb towards

direction βb
i .

Formally stated CCA is looking for orthogonal directions βa
i ,β

b
i : i = 1, . . . , d

of maximal inter-data correlation Cor[(βa
i )

T Za, (βb
i)

T Zb]. Without loss of gener-

ality we can assume expectations µa = E[Za] = 0 and µb = E[Zb] = 0 yielding co-

variances Σaa = Var[Za] = E[Za(Za)T ], Σbb = Var[Zb] = E[Zb(Zb)T ], and a joint
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covariance matrix

Σ =

(
Σaa Σab

Σba Σbb

)
= E

[ (
Za

Zb

)(
Za

Zb

)T
]
.

In analytical formulae, the problem is to maximize

Cor[(βa
i )

T Za, (βb
i)

T Zb] =
E[((βb

i)
T Zb)((βa

i )
T Za)T ]√

E[((βb
i)

T Zb)((βb
i)

T Zb)T ]

√
E[((βa

i )
T Za)((βa

i )
T Za)T ]

=
(βb

i)
TE[Zb(Za)T ]βa

i√
(βb

i)
TE[Zb(Zb)T ]βb

i

√
(βa

i )
TE[Za(Za)T ]βa

i

=
(βb

i)
TΣbaβa

i√
(βb

i)
TΣbbβb

i

√
(βa

i )
TΣaaβa

i

,

with constraints

(βa
i )

TΣaaβa
i = 1,

(βa
i )

T βa
j = 0 for all j < i,

(βb
i)

TΣbbβb
i = 1,

(βb
i)

T βb
j = 0 for all j < i.

Solving this maximization problem yields two eigenvalue problems

(Σaa)−1Σab(Σbb)−1Σbaβ1
i = (λi)

2β1
i

(Σbb)−1Σba(Σaa)−1Σabβ2
i = (λi)

2β2
i

from which it is seen that the ith canonical vectors β1
i and β2

i are equivalent

to the eigenvectors that correspond to the ith largest eigenvalues of matrixes

(Σaa)−1Σab(Σbb)−1Σba and (Σbb)−1Σba(Σaa)−1Σab respectively. Similarly, canoni-

cal correlation λi is equivalent to the square roots of the the ith largest eigenval-

ues of both of these matrixes. Because these canonical correlations are squared in

the eigenvalue problems, solving these problems may offer canonical vector pairs

between which correlation is negative. Hence, it is necessary to postprocess such

pairs by replacing βb
i with −βb

i (βb
i ← −βb

i), which yields a requested solution

with all canonical correlations being positive. Analytically this is justified because

Cor[(βa
i )

T Za, (βb
i)

T Zb] = −Cor[(βa
i )

T Za, (−βb
i)

T Zb]. From the problem formula-

tion it can be seen that CCA is invariant with respect to all affine transformations

of Za and Zb. In recent years it has been shown (Kay 1992) that performing CCA

on two data sets that come from elliptically symmetric distributions is equivalent to

maximizing mutual information between these two data sets.

For a sample of observed vectors za
1, . . . , z

a
N ∼ Za and zb

1, . . . , z
b
N ∼ Zb, em-

pirical estimates β̂
a

i , β̂
b

i , λ̂i : i = 1, . . . , d are obtained from postprocessed eigen-

vectors and square roots of eigenvalues of matrixes (Σ̂
aa

)−1Σ̂
ab

(Σ̂
bb
)−1Σ̂

ba
and



35

(Σ̂
bb
)−1Σ̂

ba
(Σ̂

aa
)−1Σ̂

ab
, where

Σ̂ =

(
Σ̂

aa
Σ̂

ab

Σ̂
ba

Σ̂
bb

)
=

1

N − 1




(za
1)

T (zb
1)

T

...
...

(za
N)T (zb

N)T




T 


(za
1)

T (zb
1)

T

...
...

(za
N)T (zb

N)T


 .

In the case of real world data, use of robust covariance estimators is

strongly recommended. For an introduction to such see (Huber 2003),

(Rousseeuw and Leroy 2003), and a recent study in (Taskinen 2003).

One common application of projection methods, in which CCA also belongs

to, is to find an alternative representation through a base change where the original

axes vectors for Za and Zb are replaced with vectors βa
i and βb

i respectively. Ge-

ometrically this is equivalent to rotation so that the highest correlating directions

become the main axes, which can make graphical plots easier to interpret. A closer

inspection of such plots shows how an observed data set is distributed. The axes

that correspond to the largest correlation coefficients are the most important ones

and typically the last axes are used to explain uncorrelated noise. Selecting the

subspace spanned by d∗, where d∗ < d, largest axes will explain

∑d∗
i=1 λi∑d
i=1 λi

percent of the data variation with d∗ : d reduction in observed vector dimensions.

This reduction is often substantial, which can mean computational and storage

advantages. This technique is commonly used for noise removal as the noise can

be assumed to be uncorrelated with respect to studied phenomena and the variance

of the noise is assumed to be smaller than the d∗ largest eigenvalue.

Using CCA for image analysis is a relatively new concept. The idea has been

discussed and some implementations do exist prior to our work. During the last

ten years, Swedish research groups led by Magnus Borga and Hans Knutsson have

publicly philosophized about the possibility of using CCA to generate feature ex-

tracting visual operators based on empirical training sets. For an overview of

their work the reader is referred to browse (Borga, Knuttson and Landenius 1997),

(Knuttson and Borga 1999), (Knuttson, Andersson, Borga and Wiklund 2000), and

(Borga and Knuttson 2001). They have also implemented some of their ideas,

mostly in the field of biomedical imaging, but their applications are not similar

to the one presented in this thesis nor does their methodology answer the type of

questions that are posed in our application.

2.3.3 Correlation within and between random fields

In spatial statistics, especially in geostatistics, there is an established

methodology for analyzing second-order statistical dependencies within and

between random fields. For an introduction to geostatistics the reader

is referred to browse (Cressie 1993), (Wackernagel 2003), (Lantuéjoul 2002),
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(Banerjee, Bradley and Gelfand 2004), or (Chilès and Delfiner 1999). In the fol-

lowing we have an introduction to spatial stochastic processes that are known as

Gaussian random fields (GRFs). We learn tools for process characteristic estima-

tion and interpretation, discuss about parametric modeling of real world images,

and comment on how the obtained models can be used to simulate new images that

exhibit the same process characteristics.

A two-dimensional random field is said to be second-order stationary if all

random variables Z(x, y) : (x, y) ∈ D have a finite expected value

E[Z(x, y)] = µ for all (x, y) ∈ D,

and if the covariance

Cov[Z(x + tx, y + ty), Z(x, y)]

= E[Z(x + tx, y + ty)− E[Z(x + tx, y + ty)]]E[Z(x, y)− E[Z(x, y)]]

= C(tx, ty)

between all pairs of random variables Z(x + tx, y + ty) and Z(x, y) with

(x + tx, y + ty), (x, y) ∈ D is finite and depends only on the spatial transition (tx, ty).

The function C(tx, ty) is known as covariogram and is also referred as covariance

function and autocovariance function. A mathematically proper covariogram satis-

fies these four conditions (Lantuéjoul 2002, p. 24):

1. C(0, 0) ≥ 0.

2. C(−tx,−ty) = C(tx, ty).

3. The integral of C over the function support is non-negative.

4. Function C is positive definite. That is for any finite sequence of points

(xi, yi)
N
i=1 and for any finite sequence of real numbers (λi)

N
i=1 the equation

N∑
i=1,j=1

λiλjC(xi − xj, yi − yj) ≥ 0

holds.

A derivative measure that is known as correlogram or autocorrelation function is

defined as

ρ(tx, ty) =
C(tx, ty)

C(0, 0)

provided that C(0, 0) > 0. This correlation measure can be considered as a spatial

extension to the other correlation measures that were previously presented in this

section. In addition, a stationary random field is said to be ergodic if

lim
||(tx,ty)||→∞

C(tx, ty) = 0,
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that is the random variables that are spatially far away from each other are also un-

correlated. With these two assumptions a random field Z = {Z(x, y) : (x, y) ∈ D}
is said to be Gaussian if any linear combination of random variables

Z(x, y) for (x, y) ∈ D follows a Gaussian distribution.

Gaussian random fields are important from both theoretical and practical per-

spective. First, with the relatively strong assumptions of second-order stationarity

and ergodicity make analytical calculations easier, which allows rigorous formalism

to be used in the description of the problem. This leads to better formulation and

reduces the need for ad hoc solutions. On the other hand the central limit theorem

suggest that summing large quantities of equally distributed random fields, in which

the distribution may be non-Gaussian, together results in a cumulative random field

that is approximately Gaussian. This means that complex real world phenomena,

which are usually sums of simpler co-factors, tend to be Gaussian.

The most commonly used measure for spatial dependency within

(a = b) and between (a 6= b) random fields Za = {Za(x, y) : (x, y) ∈ D} and

Zb = {Zb(x, y) : (x, y) ∈ D} is a semivariogram

γa,b(tx, ty) =
1

2
Var[Za(x + tx, y + ty)− Zb(x, y)] where (x + tx, y + ty), (x, y) ∈ D,

which measures the dissimilarity between pixels (x + tx, y + ty) and (x, y). In litera-

ture the form a 6= b is often called as a cross-semivariogram but in this thesis use the

name semivariogram for both forms. An empirical estimate for the semivariogram is

obtained from Matheron’s semivariogram estimate that is also known as the classical

semivariogram estimate

γ̂a,b(tx, ty) =
1

2

∑
x,y:(x+tx,y+ty),(x,y)∈D(za(x + tx, y + ty)− zb(x, y))2

∑
x,y:(x+tx,y+ty),(x,y)∈D 1

.

An another empirical estimate is Hawkins and Cressie’s semivariogram estimate

γ̄a,b(tx, ty) =

∑
x,y:(x+tx,y+ty),(x,y)∈D

√|za(x + tx, y + ty)− zb(x, y)|
0.914(

∑
x,y:(x+tx,y+ty),(x,y)∈D) + 0.988

.

Of these two the Matheron’s semivariogram estimate is more commonly known and

used whereas the Hawkins and Cressie’s semivariogram estimate is more robust to

errors in pixel intensities. In the case of second-order stationary and ergodic GRFs

the semivariogram γ and the covariogram C are related through equation

γa,b(tx, ty) = Ca,b(0, 0)− Ca,b(tx, ty). (6)

The main difference between the two is that they have different estimator properties.

Whereas the semivariogram contains approximately the same information as the

covariogram, the empirical estimator for the semivariogram is unbiased with less

demanding assumptions and is thus preferred in data analysis.

The most common way to study the second-order statistics of an image is to

plot an estimated semivariogram for visual observations; for an example of such
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FIGURE 7: An example semivariogram with model parameters θZ = (cZ , σ2
Z , aZ)

where cZ measures process nugget effect, σ2
Z measures process sill, and aZ measures

process range respectively.

see Figure 7. There are a few aspects of the semivariogram that an experienced

data analyst notices when building an understanding of the generating process.

Microscale variance, commonly referred as nugget effect and formally defined as

cZ = lim
||(tx,ty)|| → 0

γ(tx, ty),

measures the amount of dissimilarity within small transitions (tx, ty). From mathe-

matical point of view all GRFs have cZ = 0 but in practice real world images contain

measurement errors and noise which result in cZ > 0. The process variance, more

commonly referred as sill and formally defined as

σ2
Z = lim

||(tx,ty)||→∞
γ(tx, ty),

measures the amount of variation in random variables Z(x, y). The process range,

defined as the smallest value of aZ = ||(tx, ty)|| for which

γ((1 + ε)(tx, ty)) = σ2
Z for any ε > 0,

measures the effective range after which there is no spatial correlation between

random variables Z(x + tx, y + ty) and Z(x, y) when (x + tx, y + ty), (x, y) ∈ D.

For a more detailed discussion on how to interpret the semivariogram, see

(Cressie 1993, pp. 58-68 and pp. 127-135).

An alert reader might wonder if it is possible to compare two random fields

in which pixel intensities may have entirely different units of measurement. This

problem is discussed in (Cressie and Wikle 1998). In this thesis we assume that all

the studied images are preprocessed through equation

z′(x, y) =
z(x, y)− µ̂Z

σ̂Z

for (x, y) ∈ D

to have E[Z(x, y)] = 0 and Var[Z(x, y)] = 1, which effectively remedies the problem

by making the obtained results easily comparable.
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Model Covariance function Conditions

Spherical
(
1− 3||(tx,ty)||

2s
+ 1

2

(
||(tx,ty)||

s

)3)
1 ||(tx,ty)||

s
≤1

d ≤ 3

Exponential e−
||(tx,ty)||

s -

Stable e−(
||(tx,ty)||

s
)α

0 < α ≤ 2

Hyperbolic 1

1+
||(tx,ty)||

s

-

Gaussian e−(
||(tx,ty)||

s
)2 -

Cardinal size
sin

( ||(tx,ty)||
s

)
||(tx,ty)||

s

d ≤ 3

J-Bessel 2µΓ(µ + 1)
Jµ

( ||(tx,ty)||
s

)
( ||(tx,ty)||

s

)µ µ ≥ d
2
− 1

K-Bessel

( ||(tx,ty)||
s

)µ

2µ−1Γ(µ)
K−µ

(
||(tx,ty)||

s

)
µ > 0

TABLE 2: Covariograms for theoretical parametric models of Gaussian random

fields (Lantuéjoul 2002, p. 187 and p. 242). Γ, Jµ and K−µ are Gamma, J-Bessel

and K-Bessel functions respectively and s is a spatial scaling parameter, which is

not to be confused with the process range aZ .
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FIGURE 8: An example of parametric model fitting for Gaussian random fields.

In practice the covariograms that are estimated through empirical semivari-

ograms are almost never mathematically proper covariograms as they do not sat-

isfy the previously presented four conditions. The solution is to model the process

by fitting a proper covariogram to the obtained empirical estimate. Some com-

monly known covariograms are listed in Table 2. Consider that we have obtained

estimates γ̂(tx,1, ty,1), . . . , γ̂(tx,N , ty,N) for transitions (tx,1, ty,1), . . . , (tx,N , ty,N); ex-

amples of such are presented in Figure 8. One way to fit a parametric semivar-

iogram model that has gained wide acceptance is to estimate model parameters
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θZ = (cZ , σ2
Z , aZ) through least squares minimization

θ̂Z = arg min
θZ

N∑
i=1

(γ(tx,i, ty,i|θZ)− γ̂(tx,i, ty,i))
2,

where γ(tx,i, ty,i|θZ) is a parametric model obtained from Table 2 through equation

6 with parameters θZ . For an analysis of this and other parametric model fitting

techniques, see (Cressie 1993, pp. 90-104).

One obvious benefit of the process modeling is that the obtained models can

be used for simulating new realizations that exhibit the same second-order process

characteristics that the real world image has. A visual comparison between the real

world image and such simulations gives a hands-on understanding of how well the

identified parametric model is able to describe the present real world phenomena.

There are about a dozen simulation algorithms of which the two preferred are the

spectral method and the turning bands method. These two are probably the best

known, the most widely used, and they generate computational loads that are very

competitive with respect to the other known algorithms. Due to the constrained

number of pages usable for this introduction we are unable to present the details of

these simulation algorithms but instead advice the reader to browse the previously

named references.

2.4 A survey to existing research in paper science

In this section we review existing research in the field of paper sci-

ence. There are about a dozen good books covering the struc-

ture of paper. For a detailed introduction to the subject the

reader is advised to browse for example (Deng and Dodson 1994),

(Niskanen 1998), (Mark, Habeger, Borch and Lyne 2002), and

(Borch, Lyne, Mark and Habeger 2002). In the following we are going to re-

view some recently published studies. First we take a look at the stochastic

structure of paper. Then we introduce two studies concerning fiber orientation,

which is an important aspect of paper structure. This is followed by a review of

two parametric modeling techniques that can be used to model and to simulate

paper structure. The emphasis is on presenting general ideas whereas most of

technical details are omitted for clarity. These details are available from the original

publications. The reviewed studies cover only a small fraction of all the research

that is conducted the field of paper science but they do outline the current state of

the art in their respective application fields.

2.4.1 On the stochastic structure of paper

A study presented in (Dodson, Oba and Sampson 2001a) and continued in

(Dodson, Oba and Sampson 2001b) investigates the relations between four paper

properties: formation Zm, thickness Zt, density Zd, and porosity Zp. Four random
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fields are derived for local formation Z̃m, local thickness Z̃t, local density Z̃d, and

local porosity Z̃p according to

Z̃i =

{
Z̃i(x, y) : Z̃i(x, y) =

∑
(sx,sy)∈Dlocal

Zi(x + sx, y + sy)

wlocalhlocal

, (x, y) ∈ Dsample

}

where i ∈ {m, t, d, p}. Similarly four random variables are derived for global forma-

tion Z̄m, global thickness Z̄t, global density Z̄d, and global porosity Z̄p according

to

Z̄i =

∑
(sx,sy)∈D Zi(sx, sy)

wimagehimage

.

From the physical model the four random fields are known to be linked as

Z̃m = Z̃tZ̃d,

Z̃d = (1− Z̃p)δ, and

Z̃p = 1− Z̃m

Z̃tδ
,

where variable δ is used to represent fiber density. Similarly the four random vari-

ables are linked as

Z̄m = Z̄tZ̄d,

Z̄d = (1− Z̄p)δ, and

Z̄p = 1− Z̄m

Z̄tδ
.

The first paper takes an empirical approach to determine the relation between

the variation of local thickness and the variation of local density with respect to

the variation of local formation. The amount of variation is measured with vari-

ance Var[Z̃] and coefficient of variation CV[Z̃] =
√
Var[Z̃]

/
E[Z̃]. In the case

of thickness, Cor[Var[Z̃t(x, y)],Var[Z̃m(x, y)]] and Cor[CV[Z̃t(x, y)],CV[Z̃m(x, y)]]

over Dsample, the empirical study shows positive linear correlations for both measures

of variation. The former correlation seems to depend on pulp type but on the other

hand seems independent of sheet grammage, whereas the latter correlation seems in-

dependent of the pulp type but dependent on the sheet grammage. For a similar case

of density, Cor[Var[Z̃d(x, y)],Var[Z̃m(x, y)]] and Cor[CV[Z̃d(x, y)],CV[Z̃m(x, y)]]

over Dsample, the study shows positive linear correlations again for both measures

of variation. Interestingly, there seemed to be a negative correlation between vari-

ations of thickness and density when measured with the coefficient of variation,

Cor[CV[Z̃t(x, y)],CV[Z̃d(x, y)]] over Dsample, whereas no correlation was found when

measured with the variance Cor[Var[Z̃t(x, y)],Var[Z̃d(x, y)]] over Dsample. In the

former case the correlations seem to depend on the pulp type but on the same

independent of the sheet grammage.

The second paper takes an analytic approach to modeling the de-

pendencies between local variations based on a prior work presented in
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(Dodson and Sampson 1999). In this study the processes Zm, Zt, Zd, and Zp are

considered to come from planar projections of a near-planar stochastic fiber network;

for an additional reading on such see (Stoyan, Kendall and Mecke 1995). The first

presented equation

Var[Z̃p(x, y)] =
1

δ2

(
Z̄m

Z̄t

)2(Var[Z̃m(x, y)]

(Z̄m)2
− 2Cov[Z̃m(x, y), Z̃t(x, y)]

Z̄mZ̄t
+
Var[Z̃t(x, y)]

(Z̄t)2

)

≈ 1

δ2

(
Z̄m

Z̄t

)2

|CV[Z̃m(x, y)]2 − CV[Z̃t(x, y)]2|

explains the variance of local porosity with respect to local and global vari-

ation of formation and thickness. The approximate equation holds when

Z̄p ≈ Z̃p(x, y) for (x, y) ∈ Dsample. Similarly the second presented equation

Var[Z̃d] =

(
Z̄m

Z̄t

)2(Var[Z̃m(x, y)]

(Z̄m)2
− 2Cov[Z̃m(x, y), Z̃t(x, y)]

Z̄mZ̄t
+
Var[Z̃t(x, y)]

(Z̄t)2

)

≈
(

Z̄m

Z̄t

)2

|CV[Z̃m(x, y)]2 − CV[Z̃t(x, y)]2| = δ2Var[Z̃p(x, y)]

explains the variance of local density with respect to local and global vari-

ation of formation and thickness. The approximate equation holds when

Z̄d ≈ Z̃d(x, y) for (x, y) ∈ Dsample. Based on analytical and empirical experimenta-

tion, it is suggested that the relationship between averages of local density Z̃t(x, y)

and local thickness Z̃d(x, y) over Dsample is approximately linear and is well described

by the bivariate normal distribution.

2.4.2 On estimation and modeling of fiber orientation distributions

A gradient-based method, which was originally introduced in (Erkkilä 1995) and

later discussed in (Erkkilä, Pakarinen and Odell 1998), estimates a non-parametric

fiber orientation distribution from a grayscale image z = {z(x, y) : (x, y) ∈ D}. First

the gradients of the image are observed as

∇z(x, y) =

(
∂z(x, y)

∂x
,
∂z(x, y)

∂y

)
for all (x, y) ∈ D.

In the study these gradients are obtained through convolving the image with 5× 5

pixels horizontal and vertical gradient detector masks. The founding idea of this

method is that the fiber orientation angle α(x, y) at a given pixel coordinate (x, y)

is assumed to be perpendicular to the gradient ∇z(x, y). The magnitude of the gra-

dient ∇z(x, y) is used as an observation weight for the observed angle. An empirical

estimate for the probability that a fiber has angle α ∈ 4α ⊂ [0, 2π[ is then obtained

as

P̂(4α) =

∑
(x,y)∈D,α(x,y)∈4α |∇z(x, y)|∑

(x,y)∈D |∇z(x, y)| .
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If necessary, this probability measure can then be used to fit a parametric model

based on empirical data. Since its publication this method has gained acceptance

in the industry and has become almost the de facto approach for fiber orientation

distribution estimation.

A variogram-based method, which was originally introduced in (Kärkkäinen,

Penttinen, Ushakov and Ushakova 2001) and (Kärkkäinen and Jensen 2001), and

later revisited in (Kärkkäinen 2003), models parametric fiber orientation distribution

in a random field Z = {Z(x, y) : (x, y) ∈ Ω ⊂ R2} based on the expected number

of crossings PL(β) between fibers and a transect line Lβ per unit area. Here β

identifies the angle of the transect line with respect to the x-axis. Whereas it may

be impossible to separate individual fibers in the image, all the necessary information

is shown to be present in a scaled variogram

VL(d, β) =
E[|Z(x1, y1)− Z(x2, y2)|]

d
∝ PL(β)

in which (x1, y1), (x2, y2) ∈ Ω and d = ||(x1 − x2, y1 − y2)||. From stereological the-

ory it is suggested that

PL(β) = LA

∫ π

0

|sin(α− β)|f(α)dα

where LA is the mean fiber length per unit area and f(α) is the fiber angle probability

density function. For a parametric fiber orientation distribution the study suggests

elliptic density distribution function

f(α|θ = (τ, κ)) =
c√

1− (κcos(α− τ))2
for 0 ≤ α < π

in which c is a normalizing constant, τ ∈ [0, π) is the angle of the most common

fibers, and κ =
√

1− (b/a)2 where a and b are the radii of the major and minor

axes of the ellipse. This seems like a reasonable choice as there are a lot of stud-

ies suggesting that paper fibers tend to have elliptic orientation distribution. The

variogram-based method has several advantages over the gradient-based method but

for the time being the former has not been able to replace the latter in the industry.

2.4.3 Parametric modeling of paper structure

A study presented in (Johansson 2002) proposes three approaches for parametric

modeling of paper structure: a hierarchical shot-noise model, a fractal model version

of the previous shot-noise model, and a hierarchical Gibbs-Markov random field

model. Of these three the first one is briefly presented.

The shot-noise model, which is a special case of Poisson germ-grain model in

which germs correspond to spatial locations {(xi, yi)}N
i=1 that are randomly placed

in domain Ω ⊂ R2 according to Poisson distribution and in which grains correspond

to geometric objects {Ξi}N
i=1 defining spatial structures that are placed at these
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coordinates, constructs a random field

Z =

{
Z(x, y) : Z(x, y) =

N∑
i=1

Ψ((x, y); Ξi) for (x, y) ∈ D

}

by summing up the cumulative effects Ψ((x, y); Ξi) of grains Ξi at position (x, y).

For such a random field, the expected value is

µZ = λ|Ω|E[Ψ((x, y); Ξi)],

the covariogram is

C(tx, ty) = λ|Ω|E[Ψ((x, y); Ξi)Ψ((x + tx, y + ty); Ξi)],

and the semivariogram is

γZ(tx, ty) = λ|Ω|E[Ψ((x, y); Ξi)(Ψ((x, y); Ξi)−Ψ((x + tx, y + ty); Ξi))]

where λ is the expected number of germs per unit area of domain Ω, and |Ω| is the

area of domain Ω. Hence, the total number of gains N is a random variable that

is defined as N ∼ Poisson(λ|Ω|). The founding idea of the study is to model the

paper structure as a random field Z that is a sum of two independent and stationary

shot-noise models: a large scale pulp clustering model ZK and a micro-scale fiber

distribution model ZF , which conformally can be expressed as

Z(x, y) = ZK(x, y) + ZF (x, y).

The semivariogram for this random field has form

γZ(tx, ty) = γK
Z (tx, ty) + γF

Z (tx, ty).

The cluster model ZK is used to model the flocculation of pulp due to the

mechanism on which the pulp mass is sprayed on the conveyer felt in a Fourdrinier

paper machine, which is the most common machine design in large paper mills.

The cluster model consists of NK ∼ Poisson(λK |Ω|) round disks that are placed at

coordinates {(xK
j , yK

j )}NK

j=1, have height δK , and radius r. For such a random field

the semivariogram is

γK
Z (tx, ty) =





(δK)2λK
(
πr2 −

(
2r2arccos

(
||(tx,ty)||

2r

)

−||(tx, ty)||
√

r2 − ||(tx,ty)||2
4

))
, for ||(tx, ty)|| ≤ 2r

(δK)2λKπr2, for ||(tx, ty)|| > 2r.

The fiber model ZF is used to model the micro-scale variation that results

from the stochastic arrangement of individual fibers on the conveyer felt. The fiber

model consists of NF ∼ Poisson(λF |Ω|) rectangles that are placed at coordinates
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{(xF
k , yF

k )}NF

k=1, have height δF , length l, width w, and directions {(vx,k, vy,k)}NF

k=1.

The semivariogram of the model is

γF
Z (tx, ty) = (δF )2λF

(
lw −

∫ π/2

−π/2

(l − ||(tx, ty)||cos(α− arctan(ty/tx)))+

(w − ||(tx, ty)||sin(α− arctan(ty/tx)))+f(α)dα
)
,

where operator (·)+ returns the positive part of the parameter and f(α) is the

probability density function for fiber angle α = arctan(vy/vx).

These two presented models supplement each other. This is because it is com-

putationally heavy to model large paper areas using individual fibers. In addition,

the flocculation of pulp mass and the stochastic arrangement of individual fibers

happen in completely different resolutions and hence are seen to be relatively inde-

pendent from each other. Modeling the two independently allows a computationally

feasible way to obtain large areas with near to realistic micro-scale structure.

An another study presented in (Brown, Diggle and Henderson 2003) derives a

hierarchical non-Gaussian model with the objective of identifying micro-scale vari-

ation from stochastic fiber placement, medium scale variation from fiber floccula-

tion, and large variation due to change in manufacturing conditions. The proposed

model has flexible covariance structure, the model parameters have physical inter-

pretations, and the number of hierarchical layers used for different scales is not

limited to any fixed number. The estimation of model parameters is performed on

a one-dimensional transect, which is a considerable advantage in many real world

applications.

A hierarchical non-Gaussian model Z on a domain Ω ⊂ R2 is built as a sum of

N independent component random fields Zi : i = 1, . . . , N as

Z =

{
Z(x, y)

∣∣∣∣Z(x, y) =
N∑

i=0

Zi(x, y) for (x, y) ∈ Ω

}
.

The first component Z0(x, y) is used to model micro-scale variation due to individual

fibers with a white noise process that has mean α and variance τ 2. The other

components are used to model pulp flocculation at different scales of variation. These

components are formally defined as

Zi(x, y) = βi

N i∑
j=1

f i(x− xj, y − yj) where i = 1, . . . , N

where βi set the maximum heights of the flocks, f i(·, ·) define the shape of the

flocks as bivariate probability density functions, and (xi,j, yi,j) : j = 1, . . . , N i are

flock positions from homogeneous Poisson point processes with intensities λi. The

study suggest the use of Matérn functions

f i(x, y) =
νi21−νi

π(σi)2Γ(νi + 1)

( ||(x, y)||
σi/2

√
νi

)νi

Kνi

( ||(x, y)||
σi/2

√
νi

)
: i = 1, . . . , N
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in which Kν(·) is the modified Bessel function of the second kind of order νi and σi

determines the flock scale. Setting νi →∞ yields a Gaussian probability distribution

function, whereas smaller values of νi result in rougher surfaces.

For the random field Z a one-dimensional (vx, vy) directional transect is formally

defined as

Z† = {Z†(w)|Z†(w) = Z(x0 + wvx, y0 + wvy)}
where (x0, y0) is some arbitrary point in Ω and ||(vx, vy)|| = 1. The spectrum of such

a transect is obtained as

h(ω) =

∫ ∞

−∞
e−2π

√−1ωtCZ†(t)dt = 2

∫ ∞

−∞
cos(2πωt)CZ†(t)dt,

where CZ†(t) = Cov[Z†(w), Z†(w + t)]. Due to the independence and the station-

arity of the component random fields Zi, the spectrum of Z† is the sum of the

component spectra, that is

h(ω) =
N∑

i=0

hi(ω).

The derived hierarchical model has a flexible covariance structure and the model

parameters can be estimated fast, which allows a paper manufacturing process to be

monitored online. A longer term goal is to understand how the spectrum changes

with respect to the underlying process. As for the time being, there are no published

empirical studies concerning the actual use of the presented hierarchical model and

hence the full evaluation of the model is unfinished.

2.5 Discussion

In this chapter we have reviewed techniques from image analysis and analysis of

correlations, which are needed in our work, along with recently published studies

from paper science, which give an overview of the current state-of-the-art in this

field. An existing methodology that would enable us to make spatial comparisons

between different measuring techniques and different paper sheet, recall section 1.1,

in the presence of technical challenges, recall section 1.4, that are typical in paper

applications was not found from the literature. Applying classical canonical corre-

lation, as described in 2.3.2, does not yield spatial understanding of the dependency

whereas correlation measures between random fields, as presented in 2.3.3, do but

in a limited manner because they are susceptible lacking pixel correspondence be-

tween the measured random fields. In addition neither of these methodologies is

able to yield spatial descriptions of the phenomena between which the dependencies

are being measured. Hence a methodology that would be able to identify and mea-

sure dependencies between spatial patterns, which depending on the application can

have clear physical interpretations, would be of more value in practical applications.

Inspired by this challenge a new correlation measure that aims to fulfil these needs

is proposed in the next chapter.
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3 PROPOSED METHODOLOGY FOR SPA-

TIAL DEPENDENCY ANALYSIS

In this chapter we propose a methodology for detecting and measuring spatial

dependencies between two images that are generated by a random process. Our

images, which where introduced in chapter 1, are two dimensional measurements of

five paper properties: foreground and background topographies, mass distribution,

thickness distribution, and density distribution. Examples of mass distribution

and foreground topography over the same paper area are shown in Figure 9.

The two open questions that are studied in this chapter are: 1) how to detect

and measure spatial dependency between two images and 2) how to quantify the

proportional importances of spatial dependencies from different pairs of images.

For this purpose, we assume that there are observable dependencies between the

images. Furthermore, we assume that these dependencies can be characterized

through pairs of features that are obtained from local image areas. While there are

many incidental problems with the measured images, such as spatial distortions

and measurement noise, these are disregarded in this chapter as they are considered

a separate issue of data preprocessing.

The key benefits of the proposed methodology are:

• Compress the dependency information into a single easily interpretable scalar

value.

• Explain the observed dependency in terms of the spatial structures of the

studied images.

• Compare the amount of dependency in different spatial scales.

• Compare the dependencies between multiple image pairs.

This chapter is organized as follows. Section 3.1 gives an overview of the

methodology. Section 3.2 considers different aspects of observing the dependency

structure between two images and discusses how these aspects affect the developed

methodology. Section 3.3 uses the previously made observations to build a model

that explains the present dependency structure. Section 3.4 devises a robust corre-

lation measure that we later use in our own analysis. For this three visualization

techniques are presented in section 3.5. Section 3.6 evaluates the proposed method-

ology through empirical study of three scenarios that are important in our paper

application. The chapter is concluded with a discussion about the methodology.

Throughout the chapter we make use of the notation that was introduced in chapter

1.



48

FIGURE 9: Examples of mass distribution and foreground topography from a

2cm× 2cm area. The presence of dependency between these two paper properties

can be seen even with a naked eye.

3.1 An overview of the methodology

In our study the dependency between images a and b is measured via a correlation

coefficient ρa,b, which is a new spatial correlation measure that is proposed in this

thesis. An overview of the algorithm that is used to estimate this correlation coeffi-

cient is presented in Table 3. This algorithm has two main phases. In the first phase

we estimate the correlation between local image areas. Such estimates can have high

variation due to preprocessing and due to the randomness of the sampling (see for

example Figure 18). Hence in the second phase we use the estimated correlations to

estimate a new robust correlation measure, which attains approximately the same

values no matter how many times we repeat the estimation process.

The proposed methodology yields two-dimensional scatter plots (see Figure 12)

of observations between two images. The mechanism for defining the scatter plot

points is independent for the two studied paper images and hence any observed de-

pendency cannot be an artifact of modeling but instead must be a real dependency

between the two studied paper properties. From the scatter plots it is possible to

make visual inference of the nature of the dependency. In order to study propor-

tional importances of multiple paper properties, the results from multiple correlation

estimates can be visualized with a box-and-whisker plot (see Figure 14).

3.2 Observing the dependency structure

In order to understand dependencies between two paper properties, we must study

the images on a pixel level. We assume that all the images are preprocessed with

geometric transformations as described in section 2.2.1. This is done to obtain pixel

correspondence between the studied images. A tentative study shows that measuring

dependencies between two images by simply measuring correlations between pixel
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1. Obtain K correlation estimates ρ̂a,b
k through the following proce-

dure:

(a) Collect a sample of independent and identically distributed

observations (equation 7).

(b) Preprocess the observations (equation 8).

(c) Describe the preprocessed observations through features

(equation 9).

(d) Preprocess the features (equation 10).

(e) Divide the preprocessed features into training and validation

data.

(f) Obtain canonically correlated feature directions and canonical

correlations based on training data.

(g) Compress the validation features into scalar projections (equa-

tion 11).

(h) Calculate the amount of correlation between the scalar pro-

jections of validation data (equation 12 or 13).

2. Calculate an estimate for a robust correlation coefficient (equation

14).

TABLE 3: An overview of the proposed algorithm for estimating the amount of

spatial correlation between two images.

values yields inadequate results, like those that are shown in Figure 2 on page 17.

This is most likely due to the presence of spatial distortions and measurement noise

that obscure the existing dependency. Analyzing large images as a whole is also

difficult as the present structures are very complex and thus hard to comprehend.

Our solution is to make observations from local image areas of images ma and mb

through a random sample of independent and identically distributed (iid) pairs of

subimages

ma
i = {za(x, y) : (x, y) ∈ Di} and mb

i = {zb(x, y) : (x, y) ∈ Di}, (7)

which describe the local image areas around sample points

(xi, yi) : i ∈ Ω = {1, . . . , N}.
From our application standpoint we are interested in spatial variations of ma-

terial properties and how these variations are correlated between different material

properties. Unfortunately making a good definition for the variation is problematic

as a human eye is able to dismiss many types of variation if they are presented in

a vantage context. In this thesis, rather than contemplating what is a good defini-

tion for the variation, we find it easier to approach this problem from the opposite
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direction. For the observations that we have we define what is lack of variation (or

uninteresting variation from the problem perspective) via means of subimages

m̄a
i =

{
z̄a(x, y) : z̄a(x, y) =

∑
(sx,sy)∈Di

za(sx, sy)

wlocalhlocal

for (x, y) ∈ Di

}
and

m̄b
i =

{
z̄b(x, y) : z̄b(x, y) =

∑
(sx,sy)∈Di

zb(sx, sy)

wlocalhlocal

for (x, y) ∈ Di

}
.

Because the variation of means is uninteresting, obtaining the interesting variation

is a matter of subtraction. We define centered subimages as

m̃a
i = ma

i − m̄a
i and m̃b

i = mb
i − m̄b

i . (8)

For the remainder of the chapter we focus our attention on modeling and visualizing

dependencies between m̃a
i and m̃b

i .

Whereas it is possible to use the pixel intensities of the subimages m̃a
i and

m̃b
i directly for modeling, there are at least two good reasons why switching to an

alternative representation through feature functions should be considered. If we

have prior knowledge about the type of phenomena that are interesting from the

application perspective, we can design a set of feature functions φj : j = 1, . . . , d so

that they directly measure the presence of such phenomena. This also means that

it should be easier to interpret the results from the application perspective. The

other reason for switching to an alternative representation is to reduce the induced

computational load of modeling by decreasing the amount of processed information.

This is accomplished by quantifying only important aspects of an observation while

disregarding all the rest. This means that the number of scalar values that are

required to describe the observation is reduced. Formally we observe the change in

the subimages through features

fa
i =




φ1(m̃
a
i )

...

φd(m̃
a
i )


 and f b

i =




φ1(m̃
b
i)

...

φd(m̃
b
i)


 . (9)

Without loss of generality we can assume that the observed features are preprocessed

as

f ′ai ← fa
i −

∑N
i=1 fa

i

N
and f ′bi ← f b

i −
∑N

i=1 f b
i

N
, (10)

which essentially centers the feature vectors. These features are then stacked into

matrixes

Fa =




(f ′a1)
T

...

(f ′aN)T


 and Fb =




(f ′b1)
T

...

(f ′bN)T




for mathematical convenience.
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In our application we do not have the required prior knowledge to select the most

appropriate feature functions and making a wrong guess here would certainly lead

into poor modeling results. One solution is to define the feature functions φa(·) and

φb(·) so that they use the subimage pixel values directly as features. The upside of

this approach is that it maintains a clear spatial interpretation between the features

and the spatial structure that they describe. The downside is that increasing the

observed spatial area also increases the amount of pixels that are involved and thus

increases the dimensions of the feature vectors, which soon becomes an unbearable

computational strain. Our solution is to improve this idea by fixing the number of

pixels in the subimage while expanding the observed spatial area by introducing a

subimage to image scaling factor r that controls the spatial extent of the subimages

with respect to the measurement image. In practice this means that wlocalr pixels

times hlocalr pixels image areas around observation points (xi, yi) are rescaled to

wlocal pixels times hlocal pixels subimages using geometric transformations as defined

in section 2.2.1. This means that we still have a clear spatial interpretation for the

features but now we can also observe larger spatial areas without increasing the

induced computational burden. An additional benefit of this approach is that we

can easily study the amount of dependency between the images in different spatial

scales.

3.3 Estimating the dependency structure

The first thing that we need to consider with respect to the observations is how

to use them correctly from the statistical point of view. In statistical modeling a

common approach is to divide the observations into two disjoint data sets. One

of these data sets is called training data, which is used to train a model, and the

other data set is called validation data, which is used to empirically evaluate the

model. In our case this idea is implemented by dividing the observation indexes in

set Ω = {1, . . . , N} into two disjoint sets Ωtr and Ωval such that Ω = Ωtr ∪ Ωval and

Ωtr ∩ Ωval = ∅. Based on this division we obtain training data matrixes Fa
tr and Fb

tr,

and validation data matrixes Fa
val and Fb

val.

Next we devise a statistical model that qualifies and quantifies the dependency

between the observations. Our solution is to use canonical correlation analysis

(CCA), which was introduced in section 2.3.2, to decompose complex spatial struc-

tures in the observations into simpler and more interpretable structures, and then

measure the dependency between these simpler structures. This idea is illustrated in

Figure 10. Formally CCA yields pairs of d dimensional canonical vectors βa
j , β

b
j and

canonical correlations λj for which j = 1, . . . , d (in our case scaled subimage pixels

are used as features and hence we have d = wlocalhlocal). Because of the way that we

defined CCA in section 2.3.2, the canonical correlations λj are always positive and

in range [0, 1]. Each pair of canonical vectors βa
j ,β

b
j is statistically linked so that the

variation of f ′ai towards direction βa
j has the highest correlation with the variation

of f ′bi towards direction βb
j. The spatial interpretation for these reads as follows: Be-
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FIGURE 10: Modeling the dependency structure. The idea is to extract descrip-

tions of the local variations, then describe them as linear combinations of simpler

component variations that we call masks, and finally measure the amount of linear

correlation between these linear combinations. In our work we use pixels of scaled

subimages as features and hence feature vectors and canonical vectors have a clear

spatial interpretation.

cause we use subimage pixel values as features, the canonical vectors βa
j and βb

j can

be interpreted as wlocal × hlocal pixels masks, which have spatial interpretation that

is equivalent to the subimages. Hence observing a spatial pattern of βa
j in material

property a indicates that there is a statistical change that a spatial pattern of βb
j

is present in material property b. Here the word statistical means that observing

the spatial pattern of βa
j in property a does not guarantee observing the spatial

pattern of βb
j in property b but does state that it is possible with a probability that

is proportional to λj.

The estimation of masks βa
j ,β

b
j and correlations λj is based on matrixes Fa

tr

and Fb
tr. First we define a joint covariance matrix as

Σ̂ =

(
Σ̂

aa
Σ̂

ab

Σ̂
ba

Σ̂
bb

)
=

(
Fa

tr Fb
tr

)T (
Fa

tr Fb
tr

)

N − 1
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1
NA

2
0.763

3
0.710

4
0.583

5
0.553

6
0.478

7
0.372

8
0.351

9
0.334

10
0.331

11
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FIGURE 11: Example of masks for mass distribution (left) and foreground topog-

raphy (right). The center matrix defines the component order j and the amount

of linear correlation λj between masks β̂
a

j and β̂
b

j. The first masks are reserved for

the lack of variation (uninteresting variation) that was removed in the preprocessing

step. In our work we use pixels of scaled subimages as features and hence the feature

vectors and canonical vectors have a clear spatial interpretation.

and then use it to define two matrixes (Σ̂
aa

)−1Σ̂
ab

(Σ̂
bb
)−1Σ̂

ba
and

(Σ̂
bb
)−1Σ̂

ba
(Σ̂

aa
)−1Σ̂

ab
from which we obtain β̂

a

j , β̂
b

j as the postprocessed eigenvec-

tors and λ̂j as the square roots of the eigenvalues respectively. Postprocessing, as

described in section 2.3.2, makes sure that the obtained correlations between masks

β̂
a

j , β̂
b

j are positive, which makes interpretations easier. Use of robust covariance

estimators (Rousseeuw and Leroy 2003) may be necessary to obtain a reliable

result. We have made a habit of using minimum covariance determinant (MCD)

and minimum volume ellipsoid (MVE) estimates for Σ to avoid the need to check

each analysis for outliers. An example of estimated masks β̂
a

j , β̂
b

j and estimated

correlations λ̂j are presented in Figure 11. Visual examination of the masks shows

that the highest correlating masks tend to represent clear patterns of variation

whereas the latter ones look more like shot noise. There is a natural explanation

for this: the highest correlating masks represent those geometric structures that are

statistically most commonly linked between the paper properties. The remaining

masks are then left to handle less frequent incidents and noise. From this heuristic,

it makes sense to reduce the effect of noise by limiting any further analyzes to

only those masks that have a clear geometric structure or a dependency with

interpretation. Formalization of this idea means that we have a set of indexes of all

possible masks Ξ = {1, . . . , d} from which we select a subset Ξ∗ ⊂ Ξ that consists

of indices of those masks that we want to include into our analysis. As selecting the

masks by hand soon becomes laborious, we have decided to make use of the fact

that the first d∗ masks explain approximately (
∑d∗

j=1 λj)/(
∑d

j=1 λj) percent of the
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variation between the training observations. This means that we can set

Ξ∗ = {1, . . . , d∗} where d∗ = arg min
d′

∑d′
j=1 λj∑d
j=1 λj

> 0.9

to automatically select a subset of masks that is likely to explain the dependency well

but does not include the less useful masks. This approach, although not rigorously

justified, has proven to work well in our paper application.
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FIGURE 12: Example scatter plot of projected validation observations in CCA

subspaces, which are made from mass distribution (horizontal axis) and foreground

topography (vertical axis). The horizontal and vertical positions for each validation

observation are obtained from equation 11. The regression line and its empirical

95% confidence intervals show the general trend between the observations.

On pixel level the masks are able to characterize the existing dependencies.

Unfortunately the pixel level representation is also far too complex to give a clear

understanding of what these dependencies actually mean. This is due to the fact

that several masks can be jointly responsible for the detection of visually simple

structures. As a result the geometric interpretation can be hidden under an un-

known combination of masks. What is needed is a low dimensional illustration of

the dependency that can be interpreted visually. Because the masks, which were ob-

tained from CCA, are orthogonal and hence statistically independent, we can device

a projection scheme that compresses the information detected by the masks into two

scalar values. Two measures for the amount of masks βa
j and βb

j in observations ma
i

and mb
i are obtained as projections

pa
i,j = (βa

j )
T ma

i and pb
i,j = (βb

j)
T mb

i for all i = 1, . . . , N and j = 1, . . . , d.

Because of the statistical independency between pa
i,j : j = 1, . . . , d and

pb
i,j : j = 1, . . . , d we have devised an ad hoc rule to sum these to obtain two
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cumulative projections

pa
i =

∑
j∈Ξ∗

λjp
a
i,j and pb

i =
∑
j∈Ξ∗

λjp
b
i,j (11)

that use the amount of correlation between the masks to automatically adjust the

proportional importance of the masks. These cumulative projections can be visual-

ized in a scatter plot as we have done in Figure 12. Although a rigorous justification

for the proposed projection rule is hard to establish, this projection seems to func-

tion well based on our empirical experiments. An another approach, which we have

tried successfully, is to sum the projections of the first masks without any weighting.

From the scatter plot we can see that there is an obvious linear dependency

between the cumulative projections pa
i , p

b
i of the validation observations. Because the

observations that are used to build the dependency model are are not the same that

are used for visualization and because the observation mechanism is independent

for the two studied paper properties, this dependency cannot be an artifact of the

model but instead must be a real dependency between the observations. Each point

of the plot corresponds to a pair of observations that are made from the two studied

paper properties. The horizontal position of a point describes the variation in paper

property a and the vertical position of the same point describes the variation in

material property b. In addition we have plotted a least squares linear regression

line with empirical 95% confidence intervals to illustrate the general trend and its

statistical stability. Tight confidence bounds, such as the ones that we have here,

indicate that the regression model is statistically reliable and can be used for example

for prediction purposes. The next step is to devise a measure that is able to quantify

the amount of correlation between the observations with a single scalar value. A

natural choice for this is to use Pearson’s correlation estimate

ρ̂a,b =
N

∑N
i=1 pa

i p
b
i −

∑N
i=1 pa

i

∑N
i=1 pb

i√
N

∑N
i=1

(
pa

i

)2 − ( ∑N
i=1 pa

i

)2
√

N
∑N

i=1

(
pb

i

)2 − ( ∑N
i=1 pb

i

)2
, (12)

or Spearman’s correlation estimate

ρ̄a,b = 1− 6
∑N

i=1

(
rank(pa

i )− rank(pb
i)

)2

N(N2 − 1)
. (13)

These estimates were introduced in section 2.3.1. In our example case, which was

presented in Figure 12, the former estimate yields 0.825, which is an indication of

strong linear correlation between the two studied paper properties. This concurs

with our intuition from Figure 9 where the present dependency is evident even to a

naked eye.

3.4 Modeling the dependency structure

Performing the observation and the estimation of the last two sections yield a

scalar estimate that measures the amount of dependency between the two stud-

ied images. Repeating this observation-estimation procedure K times produces
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ρ̂a,b
k : k = 1, . . . , K estimates that vary between repetitions. This is due to the fact

that the proposed estimator contains randomness from the image preprocessing and

from the stochastic placement of the local area observations. This means that the

estimator, which is a random variable, can yield poor estimates with some probabil-

ity and thus a single estimate cannot be trusted to give a fair assessment of the true

amount of dependency. Our solution is to use all the K independent and approx-

imately identically distributed estimates to empirically evaluate the distribution of

the estimator.
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FIGURE 13: Interpretation for a box-and-whisker plot illustrating a visualization

of Normal(1, 0.25) distribution.

The estimator distribution can be visualized with a graphical box-and-whisker

plot, which was originally proposed by Tukey (Tukey 1977, pp. 39-43) and is illus-

trated in Figure 13. The interpretation for the plot reads as follows: The box is

drawn between 25% and 75% distribution quantiles. Inside this box a line indicates

the position of the 50% distribution quantile, which is known as the median. Out-
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side of the box whiskers are drawn to the farthest points that are not considered

outliers (that are within 3/2 times the interquartile range of 25% and 75% distri-

bution quantiles). The outlier points that lie outside of the range of the whiskers

are drawn with a circle. From our application perspective this plotting technique

includes all the relevant information in an easily interpretable form. Placing mul-

tiple plots side-by-side allows easy comparison of relations between different paper

properties.

Our solution to obtain a statistically sound estimator for the true amount of

dependency is to define a robust correlation coefficient

%a,b = median({ρa,b
k : k = 1, . . . , K}), (14)

which estimates are stable enough to be used for statistical inference. Although

an analytical evaluation of this estimator is difficult due to fact that large number

of factors cannot be exactly defined and thus such an analysis is omitted from our

study, from our empirical experimentation we can state that calculating repeated

estimates of this correlation coefficient yield closely the same result. Similarly other

distribution quantiles, especially those that are not too far from the median like 25%

and 75% distribution quantiles, are also stable and taking pairs of such provides

an easy way to estimate the variation of the area correlation coefficient. From

application perspective, we are often interested in how the correlation coefficient

%a,b evolves as a function of spatial scale. An easy way to empirically study this is

to estimate the correlation coefficient as a function of the subimage to image scaling

factor r. In the later chapters this function, which we denote with

%a,b(r), (15)

forms the backbone of our own analyzes.

3.5 Visualization techniques

In this section we propose a few visualization techniques that illustrate how the

model that was devised in the previous sections explains the correlation between

spatial variations of different paper properties. For illustration purposes we use

images of mass distribution and foreground topography (see Figure 9). The analysis

is based on N = 10000 observations that are partitioned into Ntr = 5000 training

and Nval = 5000 validation observations, and on wlocal = 10 pixels times hlocal = 10

pixels subimages with the subimage to image scaling factor r belonging to range

[0.25, 4.00]. In spatial terms this means that the observed physical area ranges

from 0.25mm× 0.25mm to 4.00mm× 4.00mm. In the presented result plots the

horizontal axes indicate the parametrization of the studied phenomenon whereas

the vertical axes always measure the amount of dependency.

Estimation of robust correlation coefficients for all pairs of paper properties

allows us to draw collections of box-and-whisker plots where visual comparisons
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FIGURE 14: Correlation coefficients between mass distribution and the other paper

properties with subimage to image scaling 1 : 1. Each box-and-whisker plot describes

the distribution of a correlation coefficient %a,b between mass distribution and the

paper property whose name is indicated below the plot. The vertical axis measures

the amount of dependency.
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FIGURE 15: Correlation functions between mass distribution and the other pa-

per properties. Each paper property is identified with a number: 1=background

topography, 2=foreground topography, 3=mass distribution (omitted), 4=thickness

distribution, and 5=density distribution. The horizontal axis indicates the size of

the observed local area and the vertical axis measures the amount of dependency.

between the plots are easy. An obvious application for this is to select one paper

property towards which all the other paper properties are compared. This idea is

illustrated in Figure 14. The interpretation for this plot is as follows: The title line

indicates the paper property to which we compare all the other properties. The

horizontal axis identifies the other property as the name of the other property for

each plot is drawn under the plot. The vertical axis indicates the amount of depen-

dency and always uses the range [0, 1]. In this example we study the dependency

between mass distribution and the other four measured paper properties. As we can

see, in this case the density distribution is the highest correlating paper property

whereas thickness distribution along with background and foreground topographies

come behind. The conclusion is that in this case all the studied paper properties

are correlated with the mass distribution, which concurs with our intuition and is
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hence very easy to accept. An another good visualization is to omit the confidence

bounds of the correlation coefficient and to draw the correlation coefficient %a,b(r)

with respect to different subimage to image scaling factors r as we have done in

Figure 15. As we can see, the effect of the scaling factor is substantial in this case.

Whereas the confidence bounds of the estimate distributions are important for prob-

lem diagnostic purposes, the amount of dependency with respect to spatial scale is

usually more interesting from the application perspective.
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FIGURE 16: Spatial interpretation for the regression model. Visualizing observa-

tions that are well explained by a regression model yields an intuitive interpretation

for this regression model.

In Figure 12 we used a linear regression model to illustrate the general trend

between the observations that were made from the studied paper properties. We

know that the observations that are located at the lower-left corner are somehow

different from the ones that are located at the upper-right corner but how they are

different has not been made clear yet. Including a spatial interpretation for the

regression line answers this question. One way to obtain such an interpretation is

to pick observations from the discussed corners and in addition from the center and

place pairs of subimages m̃a
i and m̃b

i from these observations on three groups as we

have done in Figure 16. Formally the observations in these groups are indexed with

Ωleft = {i : rank(rank(pa
i ) + rank(pb

i)) ≤ M, i ∈ Ωval}

Ωmiddle =

{
i : rank

(
abs

(
rank(pa

i )−
Nval

2

)
+ abs

(
rank(pb

i)−
Nval

2

))
≤ M, i ∈ Ωval

}

Ωright = {i : rank(rank(pa
i ) + rank(pb

i)) > Nval −M, i ∈ Ωval},
where M is the number of picked observations and the operator rank(·) returns the

rank order of the parameter among its peers and the operator abs(·) returns the
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absolute value of the parameter. It should be noted that these three equations rely

on all the canonical correlations to be positive. In Figure 16 the three groups of

masks are interpreted as follows: The left group of observations consists of pairs of

subimages m̃a
i , m̃

b
i , i ∈ Ωleft so that in pairs m̃a

i is placed above m̃b
i . The middle and

the right groups of observations are defined in an analogous manner for observations

in Ωmiddle and Ωright respectively. As we can see from Figure 16, the left and the

right group consists of observations that have similar spatial interpretations whereas

the middle group does not. This concurs with the fact that deviation in the direction

of the regression line increases the amount of dependency between the observations.

As we can see, this visualization technique suffers from noise presence and hence it

is recommended that all images are filtered to remedy the effects of noise prior to

visualization.

3.6 Empirical experimentation of the methodology

Before we are able to conduct effective data analysis with the proposed methodology,

we run some experiments to see how the methodology reacts to three scenarios

that are important from our application perspective. These scenarios study how

subimage size and scaling, mean filter preprocessing, and pixel correspondence affect

the obtained results. In our experiments we use the same images, mass distribution

and foreground topography, that we used in the previous section. All the analyzes are

conducted with K = 25 repetitions and based on N = 10000 observations that are

partitioned into Ntr = 5000 training and Nval = 5000 validation observations. If not

otherwise indicated in the result figures, the analysis is performed using wlocal = 10

pixels times hlocal = 10 pixels subimages with the subimage to image scaling factor

r ranging in [0.25, 4.00]. In the presented result plots the horizontal axes indicate

the parametrization of the studied phenomenon whereas the vertical axes always

measure the amount of dependency.

In the first experiment we study how increasing the size of the observed image

areas affects the measured dependency. There are two ways to do this: we can

increase the amount of pixels in our subimages, which means increasing wlocal and

hlocal, and we can increase the subimage to image scaling factor r that changes the

spatial extent of the subimages with respect to the images. Results from both of

these approaches are presented in Figure 17. It seems that increasing the spatial

extent of the observations increases the amount of observed dependency. Increasing

the amount of pixels in the subimages allows the masks to capture larger structures.

It seems that the material structures that have the strongest dependencies between

them in the two studied images do not properly fit in the smaller observation areas

and hence the observed dependency is also weaker. Increasing the subimage to image

scaling factor r increases the spatial extent of the observations and leads into the

same conclusion. In addition it increases the amount of implicit smoothing in the

geometric transformations of the subimages. This reduces the amount of noise which

results in the correlation coefficient estimator distributions becoming tighter.
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FIGURE 17: Effect of subimage size and subimage to image scaling factor on de-

pendency between mass distribution and foreground topography. The four plots use

subimage to image scaling 1 : 1, 2 : 1, 3 : 1, and 4 : 1 respectively. The horizontal

axes indicate the used subimage width wlocal and height hlocal, whereas the vertical

axes measure the amount of dependency.
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FIGURE 18: Effect of mean filter preprocessing on dependency between mass dis-

tribution and foreground topography. The four plots use subimage to image scaling

1 : 1, 2 : 1, 3 : 1, and 4 : 1 respectively. The horizontal axes indicate the used mean

filter width and height, whereas the vertical axes measure the amount of dependency.

In the second experiment we study the effect of noise and how it influences

our ability to make proper conclusions – especially from the available spatial rep-
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resentations (see Figure 16). Whereas from theoretical point of view CCA is able

to bypass random noise because it does not correlate, in practice this is not always

the case. In fact the noise can correlate by chance and obscure parts of the spatial

structures between which the dependencies are sought for. In case of pixel features,

CCA does not understand the spatial relations between the pixels and hence filtering

techniques that see the image as a two-dimensional lattice may be able to produce

added value. The obtained results are presented in Figure 18. There is a small

but evident benefit coming from filtering. From the results, we can see that in this

case conservative filtering with 2× 2 or 3× 3 pixels mean filters produce the best

results. Filter sizes larger than this are clearly harmful as the payoff from reduced

noise diminishes rapidly while the increased smoothing wipes out ever increasing

parts of valuable information. Unfortunately these results vary between different

combinations of measurement images and hence one all-inclusive answer cannot be

given. It is the responsibility of the data analyst to select the proper amount of

filtering for each studied image.

In the third experiment we study the effect of pixel correspondence. In our

paper application lacking pixel correspondence originates from imprecise detection

of the markers that are used to define the pixel correspondence structure (recall sec-

tion 2.2.1). These markers occupy multiple pixel regions and hence it is impossible

to pinpoint all the markers with complete accuracy. In reality the markers have

two types of problems: some markers may be accidentally misplaced far away from

their correct locations making them outliers, and all markers may contain noise from

an unknown distribution. The former problem of outlier markers can effectively be

remedied with the use of robust regression techniques. The latter case of noisy

markers is more difficult as the only way for improvement is to repeat the manual

pinpointing of markers, which requires a lot of manual work. Hence, in this experi-

ment we study the effects of noisy markers on our methodology. We do this by taking

one image, the mass distribution image, and measure the amount of dependency be-

tween two instances of this image when the geometry of one of these instances is

distorted by manipulating the markers of this instance with Gaussian noise of zero

mean and small standard deviations. The obtained results are presented in Figure

19. As we can see the amount of dependency starts from 1 which is logical as here

the two instances are identical and thus we have perfect pixel correspondence. As

we increase the amount of distortion the dependency decreases almost linearly. It is

interesting to see the effect of subimage to image scaling factor. Whereas the larger

scaling factors implicitly smooth out some amount of distortion and hence operate

a bit better, the loss of dependency as a function of the amount of distortion is so

dramatic that the smoothing on its own cannot remedy the problem. As a con-

clusion we can state that the methodology is able to tolerate small scale noise but

also that in larger scales the noise has a very negative effect on the methodology

and hence the lack of pixel correspondence can effectively make or brake the whole

analysis. Whereas some feature functions are, to some degree, less sensitive to the

lack of pixel correspondence, even these cannot solve the problem entirely.
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FIGURE 19: Effect of pixel correspondence on dependency between mass distri-

bution and foreground topography. The four plots use subimage to image scaling

1 : 1, 2 : 1, 3 : 1, and 4 : 1 respectively. The horizontal axes indicate the standard

deviations of the Gaussian noise that is added to the markers, whereas the vertical

axes measure the amount of dependency.
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3.7 Discussion

In this chapter we have proposed a methodology for detecting and measuring spa-

tial dependencies between images. As far as we know there are no comparable

methodologies in the literature that would answer the type of questions that we

try to answer in our study. In chapter 5 the proposed methodology is employed

on our paper images. With respect to future research we state that extending the

methodology, which was presented in a simplified form in this chapter for illustration

purposes, is very easy. Two extensions that are of particular interest are using linear

CCA between more than two images at the same time and using non-linear CCA or

even kernel CCA to observe non-linear dependencies. The necessary building blocks

for both of these ideas are already available in the literature.



66

4 INTERACTIVE WORKING ENVIRON-

MENT FOR DATA ANALYSIS

In this chapter we outline an example implementation of the methodology that

was proposed in chapter 3. Having an implementation is necessary for the empirical

evaluation that we do in chapter 5. We begin by setting a few design goals and

introducing a generic system architecture for data analysis. This system architecture

is then used for an example implementation. The chapter is concluded with a brief

discussion.

4.1 Design goals

In this section we set a few design goals for the implementation and discuss about

what a data analysis software should, at least from our perspective, look like. Cur-

rently no implementation can completely replace the data analyst in data exploration

but when cleverly constructed a computer implementation can be of great assistance

and can have a dramatic boost on the data analyst’s productivity. For this purpose

we consider things like ease of use, interactivity, modifiability, portability, and re-

spectability in software development. As these concepts are intricate in nature we

content ourselves to presenting their main ideas in an abstract level.

Ease of use. Ease of use has become a kind of cliché in software engineering as

every software developer eagerly states that their software is easy to use. Whereas

this is seldom true according to the users, we try to formulate a good definition for

ease of use in away that we are in practice able to accommodate. In our opinion

a scientific software is easy to use when it minimizes the amount of details that

the user has to remember and transparently automates some of the most laborious

tasks that are involved. This does not mean that everyone should be able to use

the software without bothering to browse the user manual beforehand but it does

mean that when the user reaches a certain level of experience he feels comfortable

working with the software. This very abstract but insightful definition will be the

most important guideline in our design.

Interactivity. An important part of the usability, especially when exploring

new data sets, is to enable and to encourage the user to work in an interactive

manner. This means that rather than giving all instructions at once and then

running the whole analysis in a batch process, the user should be able to make small

decisions and be allowed to come back to change his mind along the whole analyzing

chain. To enable such working habits the software should be constructed from small

functional blocks that the user concatenates to create larger analyzing chains. When

the user sees he has made an error in judgement he should be given the opportunity

go back to make changes to his previous choices. Such an approach allows the user

to easily tinker with a data set and at the same time to gain a better understanding

of this data set.
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Modifiability. An another important part of usability is application modifia-

bility. From continuous use of the software the user is likely going to get new ideas

that could improve the functionality of the software even further. For the added

value from these ideas to realize the user must be able to make his own modifica-

tions to the functionality of the software. Most of the current software that is in

use, even those that support recording macros or ship with full source code, are in

effect not modifiable. Gladly some of the scientific software make an exception with

their high level scripting languages that are used to implement application specific

functionality. We want to see more software that allows the user to modify any part

of the software functionality when he feels it necessary.

Portability. Whereas the general public tends to prefer using the de facto

operating platform, which at the time of writing is based on Intel hardware and

Microsoft software, the researchers constitute a more heterogeneous group of users

that work with the whole range of available platforms. Some of them feel strongly

about the platform that they have become accustomed to and are thus very reluc-

tant to making any changes that would inconvenience their daily routines. Hence

portability across multiple platforms must be emphasized more with scientific soft-

ware than it is currently done in software engineering. Our objective is to make our

implementation an example of good portability so that switching to a new platform

requires recompilation of a few libraries only. To define a concrete objective we aim

for Microsoft Windows, Apple MacOS, and Linux.

Respectability. No respectable scientist is going to use any piece of soft-

ware unless they feel completely comfortable that the software meets certain quality

requirements on proper functionality. Either this comfort raises from the fact that

they have implemented the software themselves and thus know exactly how it works,

or from a well established position that the software has in their respective research

society. Outside the field of information technology the latter justification one is

prevailing and if possible this should be taken advantage of.

4.2 A generic system architecture for data analysis

In this section we present a generic system architecture that can be used for ap-

plications in data analysis. This architecture is used for the presented example

implementation. The design goals of the previous section set a high standard for

the architecture. In practice achieving all these goals is difficult. Although there is

always room for improvements, the system architecture that is presented in this the-

sis is very close to meeting all the stated design goals. The presented architecture

consists of six main components: a core for computations, extension libraries, an

application logic, user interfaces, a user, and a data storage (see Figure 20). Each

of these components has a specific role as described in the following.

R core provides a high level macro language with operations for naming, stor-

ing, and manipulating data objects such as vectors, matrixes, and data frames (for

a detailed description see (The R Foundation 2005a)). Whereas any high level com-
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puting core would do, we have chosen to use R because in our eyes it has many

considerable advantages: R is versatile enough to be suitable for all types of data

analyzes, R is mature and portable enough for our purposes, R is distributed as a free

software with full source code, and R has established a solid position in statistical

community. A brief introduction to R is given in section 4.2.1.

Extension libraries are used to extend the basic functionality of the R core

with new operations that are stored in dynamically loadable software libraries. These

libraries are programmed using compiled languages like C and Fortran. Because the

libraries are compiled to efficient system code, which can sometimes yield quantum

leaps in execution speed when compared to interpreted macro language implemen-

tation, the developed operations function as effectively as the internal operations of

the core. In fact the distinction between the operations of the core and the opera-

tions that are loaded from extension libraries is negligible, and operations of both

types are used almost exactly the same way. An introduction to author’s extension

libraries, which we need for the example implementation, is given in section 4.2.2.

Application logic uses the services of the R core and of the extension libraries

to perform application specific tasks as instructed by the user through one of the

user interfaces. In the presented system architecture the application logic is always

implemented using R macro language and only computationally heavy operations

are implemented in the extension libraries using C language. From our experience of

developing various scientific applications we have found this approach to be the most

productive as it minimizes the burden of development. A few lines of macro code

typically corresponds to hundreds of lines of C code and the induced computational

overhead is often negligible. An additional benefit of this approach is that modifying

and porting applications becomes much easier.

User interfaces form a bridge between the users and the application logic. The

requirements for the user interfaces vary heavily between different users and different

applications. Hence there is a clear need to allow the system to be used through

multiple user interfaces each of which fulfils a particular need. In the presented

architecture the most generic interface is the command prompt interface, which is

provided by the R core. This user interface is always available and it provides a direct

access to all data objects and operations in the system. Hence this user interface

is good for developers and advanced users who already know what they are doing

and want to do it in the most effective way. Unfortunately the command prompt

interface is also far too complicated for the end users who need the software to steer

them in order for them to successfully use the system. For such users a graphical

interface that contains a limited set of operations that are tailored to fit the exact

needs of the application is usually the best approach.

User plays an important role in the system. The user must place experiment

data, which contains the results from an experiment, and metadata, which describes

the contents of the experiment data, in an appropriate format to a predefined data

storage, and then use the services of the system to analyze this data. The role of the

user is to incorporate cognitive reasoning to otherwise mechanical data processing.



69

This is essential for making proper conclusions about causalities between the studied

phenomena and interpreting the obtained results from the application perspective.

Data storage is used to keep experiment data, metadata, and system settings

when the system is not in use. The organization of the data and the used file formats

are application dependent and become fixed through the implementation.

APPLICATION

LOGIC

CUSTOM

INTERFACES

R CORE
EXTENSION

LIBRARIES

COMMAND

INTERFACE

SYSTEM

DATA

STORAGE

USER

FIGURE 20: An example system architecture for data analysis.

4.2.1 Introduction to R language and environment

R is the name of a language and of an environment that are targeted for statis-

tical computing (see www.r-project.org). It is a free software that is similar to

commercial S language and environment, which were developed at Bell Laboratories

(formerly AT&T, now Lucent Technologies) by John Chambers and his colleagues.

Despite the fact that the two languages are almost identical, that is the macros that

are written using one language tend to meet the requirements of the other language

as well and hence macros are usually portable between the two environments, it

is important to understand that the two environments are developed by two inde-

pendent organizations and their internal designs are hence also different. The most

important contributors in the R project are Douglas Bates, John Chambers, Peter

Dalgaard, Robert Gentleman, Kurt Hornik, Stefano Iacus, Ross Ihaka, Friedrich

Leisch, Thomas Lumley, Martin Maechler, Duncan Murdoch, Paul Murrell, Martyn

Plummer, Brian Ripley, Duncan Temple Lang, Luke Tierney, and Simon Urbanek.

R is a self-sufficient statistical environment that provides tools for data analysis,

modeling, statistical inference, and graphical visualizations (see Figure 21). The R

macro language is designed to be a true computer language that allows users to

develop new operations by defining new functions. The language syntax knows
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the most common data structures, like vectors, matrixes and data frames, and is

able to directly perform many algebraic operations between these structures. More

complex operations are implemented as functions. The list of existing operations in

the current software version include clustering, classification, linear and nonlinear

modeling, and statistical testing to name a few.

Despite being a free software that depends on contributions of voluntary pro-

grammers, most of the documentation that is covering the R macro language, the

R environment, and the extension libraries are of good quality. This documen-

tation is available from R command prompt, as hypertext that is shown through

a web browser, and in easily printable portable document format (PDF). An in-

terested reader should start by browsing (The R Foundation 2005a), which gives

a brief description of the R language with examples, and then continue read-

ing (The R Foundation 2005b), which describes how new operations can be imple-

mented using C language. Based on the author’s own experience for a person that

is familiar with programming principles it is possible to learn to use R in one day.

The newest version of R can be downloaded from the project website

http://www.r-project.org/ under the terms of the Free Software Foundation’s

GNU General Public License. The software is made available in source code and in

compiled binaries. List of supported operating systems include Microsoft Windows,

Apple MacOS, and most distributions of Unix with X11.

4.2.2 Introduction to author’s extension libraries

When the operations of the R core are not enough to accommodate application needs,

new operations can be implemented either in R macro language or in C, C++, or

Fortran languages. These operations are assembled into libraries from which they

can be dynamically embedded to the resource pool of the R core. The libraries that

have reached a certain level of maturity are usually bundled into R packages, which

are complete operational entities that contain the library, documentation, licensing

information, and possible some example data sets. Sharing a package is made easy

as there is a well functioning distribution network (for details see http://cran.r-

project.org/). The author has designed and implemented a few packages that

address some of the shortcomings of R. All of the libraries that are presented here

are made portable to Microsoft Windows, Apple MacOS, and Fedora Linux with

X11 server.

Digital image processing library complements the R core with the most

common operations that are used in image analysis. R has no native support for

working with images and hence without an extension library the applications of this

type are subject to poor execution speeds. The author’s library provides the most

common image processing operations ranging from geometric transformations and

filtering to feature extraction and beyond. As images are stored in R matrixes the

user has a direct pixel level access from the R macro language to the images at all

times, and hence mixing operations that are implemented using the macro language



71

FIGURE 21: Example views to demonstrate the graphical interface of the R envi-

ronment.

with those from the library is easy.

Graphical user interface library allows the R macro language to be used

to build interactive graphical user interfaces (GUIs). Interactive GUIs are valuable

in data analysis because effective visualization is sometimes indispensable in order

to gain good understanding of the results of analyzes. The R core provides good

tools for drawing simple statistical graphs such as scatter plots and histograms.

However, support for bitmap graphics is somewhat lacking and there is no way to

make new user interfaces that are tailored to the needs of the application. The

guiding principle of the author’s library is that implementing GUIs should be as

easy as implementing the application logic so that the GUI can evolve in the same

pace with the functionality of the application logic. In most scientific software this

is not the case, actually far from it, and hence a thorough planning is required

prior implementation. Whereas the author’s library cannot remove the need for

good planning, it manages to reduce the amount of work that is involved. A typical

application tailored GUI requires only a few hundred lines of R macro language and

rewriting these should be a matter of few hours of work at most.

Multithreading library provides an easy way to take advantage of the multi-
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core central processing units that are becoming popular in current workstation and

server designs. The author’s library offers POSIX style multithreading and synchro-

nization services to be used directly from the R command prompt. Unfortunately

R is not completely thread safe, there are a few operations that cause the execution

to hang in case of two or more simultaneous calls, and hence a case by case study

is needed to make sure that the performed operations are working properly. This

is an unfortunate shortcoming in the design of R that will hopefully be corrected

in the forthcoming releases. Based on empirical experimentation that were limited

to thread safe operations the automatic multithreading of bootstrapped procedures

using this library offers clear advantages for computationally intensive applications.

4.3 Example implementation of the proposed methodology

In this section we review a brief description of an example implementation that uses

the system architecture of the previous section to implement the methodology that

was proposed in chapter 3. The implemented system provides a working environ-

ment in which a data analyst, hereafter referred as the user, can conduct analysis

for detecting and measuring spatial dependencies between two or more images. Per-

forming analyzes with this system consist of five stages that are illustrated in Figure

22.

Preceding activities are performed before the user can start using the imple-

mented system. These activities include storing all experiment data and metadata

in a system specified format. In the example case the experiment data consist of

paper measurement images and metadata define pixel coordinates of the markers

that are used in geometric transformations of the images, and the image areas that

are rejected from the analyzes.

Image processing includes operations that take an image and return an an-

other image as a result. Some of the implemented image processing operations were

described in chapter 2. The implemented system provides operations for

i) opening measurement images from data files (storing processed images is also

possible),

ii) loading metadata that restricts analyzed image areas and describes marker

pixel coordinates,

iii) performing geometric transformations for obtaining pixel correspondence be-

tween the studied images (as presented in section 2.2.1),

iv) performing trend removal for equalizing measurements over different image

areas (as presented in section 2.2.2),

v) image mean and median filtering for measurement noise removal (as presented

in section 2.2.3),
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vi) extracting stochastic and deterministic parts of measurement images for mod-

eling purposes (this is an application specific operation that is presented in

section 5.2),

vii) extracting observations and converting them into features (as presented in

section 3.2),

viii) and visualizing the result after each of the previous operations (this feature is

available in the graphical user interface only).

The parametrization of these operations is not fixed and the user can interactively

build the best image processing chain for each studied image. All the image views

can be linked together in such way that changing the visible area in one of the image

views will automatically update the other image views so that the same image area

is always visible in all of the image views. With this feature it is easy to focus on

different paper properties of the same paper area.

Model building is an operation chain that takes observations from two images

and returns an estimate of the proposed CCA correlation between these two images.

The implemented system provides operations for

i) building a canonical correlation model between the observations of two images

(as presented in sections 3.3 and 3.4),

ii) visualizing the canonical correlation model (as we have done in Figure 11 and

in Figure 12),

iii) and interactively grouping the observations in image space (from an image) or

in model space (from a scatter plot) using the pointer (this feature is available

in the graphical user interface only).

Again the parametrization of these operations is not fixed and the user can inter-

actively build multiple models to see how they describe the studied dependency.

When a model is built the user can divide the observation points into groups using

the pointer. In the scatter plots these groups are visualized with different point

colors, and in the image views the observations are indicated with subimage borders

that are drawn over the images with the group color. One example of how to use

this feature is to select a set of outlier observations from a scatter plot and then see

how they are spatially distributed in the images. The grouping is shared between

all model and image views and hence selecting interesting observations from one

model will also show how they spread in the other model spaces. Similarly the user

can select and group observations from a particular image area using the pointer.

This way he can see for example how visually observable anomalies project back to

model space. We have found that moving back and forth between the image and

the model representations gradually improves the understanding of the models and

the underlying phenomena.
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Analysis operations use image processing and model building to provide an

answer to a specific question. A typical question contemplates how the observed

spatial dependency changes when we change one of the two studied images or when

we keep the two images but change one of the parameters in image processing or in

model building. Examples of possible analyzes are provided in section 3.6 and more

concrete analyzes are demonstrated in chapter 5.

Interpretation of the results is based on graphical visualizations and on

numerical statistics that are provided by the implemented system. The actual in-

terpretation of the results is not performed by the system but is instead based on

cognitively reasoning of an application expert. In our application this is the only

feasible way to merge understanding that is coming from empirical experimentation

and modeling of the data to the prior knowledge and understanding of the applica-

tion engineer. A hands-on example of how to interpret the obtained results in a real

world case is provided in chapter 5.

DATA

STORAGE

DATA

STORAGE

ANALYSIS

IMAGE

PROCESSING

MODEL

BUILDING

ANALYSIS

INTERPRETATION OF THE RESULTS

RESULTSEXPERIMENT DATA

AND METADATA

FIGURE 22: A schematic of workflow in the example implementation.

The implemented system provides two user interfaces. The first one, which is

suitable for developers only, is really a package of macro files. The user must edit

the macro files with an editor and then run them from the R command prompt.

Naturally the level of interactivity is small but on the other hand modifying the

system requires less expertise and this approach is also good for batch processing.

The second one, which is more suitable for end users, is a graphical desktop on

which the user can open images, build models, and execute analyzes. According to

the established GUI design rules all user actions are commanded from a menu that is

located on top of the desktop. Similarly on the bottom of the desktop there is a status

bar through which the user is informed on the actions that he is currently using.

Remainder of the desktop is reserved for a multiple document interface (MDI) where
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a new window is opened for each image, model and analysis. An example workspace

with multiple images and models is shown in Figure 23. The system keeps track of

the user’s actions and allows the current state of the workspace to be saved to and

loaded from a file. This way the user can save his work and continue on working

from the same state at a later date. When working this way, it should be noted that

the workspace contains only references to the original measurement data that must

hence also always be made available. This way the workspace structure is very light

to use and does not consume large quantities of disk space.

FIGURE 23: Implemented graphical user interface.

4.4 Discussion

In this chapter we have gone over some design goals, an example system architec-

ture, and an example implementation for the methodology that was proposed in

chapter 3. The presented implementation is a necessary part of our evaluation of

the methodology because a computer tool is the only feasible way to use the pro-

posed methodology for a real world application. The presented system architecture

seems very generic and suitable for data analysis in the fields of statistics and com-

putational intelligence.
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5 EXPERIENCES FROM THE PAPER APPLI-

CATION

In this chapter we present an example of data analysis on our paper measure-

ment images. We start with a brief introduction to conducted measurements and

how the images were preprocessed. The presented analysis begins with standard

geostatistical methodology, which is used to gain an understanding of the content of

the paper images. This understanding is important for the proper use and evalua-

tion of the proposed CCA correlation methodology, which was proposed in chapter

3. Based on the results from CCA correlations we are able to answer most of the

questions that we have from methodological and application perspective. Here is a

list of the most important findings from methodological perspective:

• It is possible to understand the role of spatial scale of the structures inside an

image.

• Modeling with Gaussian random fields allows a compression of all essential

information from an image into a few scalar values. Simulating new images

using these models provides examples of natural process variation.

• Empirical correlograms and cross-correlograms provide an easy way to make

a tentative study of the spatial correlations within and between images.

• Empirical correlations from the proposed CCA methodology complement the

results of the tentative study.

• Additional visualizations provide spatial descriptions of the structures that are

behind the observed correlations.

This list is continued with the most important findings from the paper application

perspective:

• There are clear differences between the studied smooth and rough paper types.

• The amount of observed dependency depends on spatial scale. In case of our

paper sheets the highest correlations are seen in 2.5mm - 4.0mm spatial scale.

• Estimated thickness distribution explains the paper structure better than ei-

ther of the surface topographies.

• Making reliable conclusions with respect to density distribution is problematic

based on the conducted experiment.

• Thickness distribution is the best paper characterizing property in the studied

context. Mass distribution is the best paper characterizing property that can

be measured directly.
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5.1 Introduction to the paper images

A paper sheet is essentially a realization of a real world stochastic process that exists

in paper manufacturing. This process is challenging to model because of the difficul-

ties involving measurements and because of the complexity of the paper structure.

However, it is possible to characterize the properties of this process based on obser-

vations that we can make from an image of a paper sheet. This way the problem

of understanding a paper sheet can be divided into smaller and more manageable

subproblems, which we tackle in the following sections.

In order to understand the structure of a paper sheet we need to obtain two-

dimensional spatial maps of various paper properties. In our study we use images

that have 1024× 1024 pixels to represent approximately 10cm× 10cm paper area.

We have images of background and foreground topography, along with mass dis-

tribution, which is commonly referred as formation, and computationally obtained

thickness and density distributions (recall the exact problem setting and experiment

from section 1.1). Omitting errors and noise, in these images small pixel values,

where pixels are dark, correspond to small measurement values. For the topogra-

phies dark implies that the pixel is in a topographical hole or a valley. In case of

the distributions dark indicates that the paper is light, that the paper is thin, and

that the paper is sparse respectively. Analogously we have that large pixel values,

where pixels are light, correspond to large measurement values and hence indicate

that the pixel is in a topographical hill or a hill range, and that the paper is heavy,

thick and dense respectively.

Conducting measurements with more than one instrument generates images

that are not in the same scale and position. In our application this problem, com-

monly referred as the pixel correspondence problem as introduced in section 2.2.1,

raises from the fact that in practice it is impossible to align the measured paper

sheets exactly in the same way with all the measuring instruments. In addition

the resolution of the measurements may vary between the instruments. From our

methodology we have the precondition, recall section 3.2, that those images that

measure different properties of the same paper sheet must have all the pixel mea-

surements from the same point of the paper placed at the same pixel coordinate.

Hence all the raw images are geometrically transformed to accommodate this re-

quirement. Unfortunately it is not possible to obtain full pixel correspondence,

which is likely to affect the obtained results. The reasons for this were discussed in

section 3.6.

The most common approach to measure paper surface to-

pographies is to use laser profilometry. This approach is dis-

cussed in (Banerjee, Bradley and Gelfand 2004, pp. 661-698) and

(Borch, Lyne, Mark and Habeger 2002, pp. 429-450). In our study we have

measurement images

zbackground = {zbackground(x, y) : (x, y) ∈ D} and

zforeground = {zforeground(x, y) : (x, y) ∈ D}
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for background and foreground topographies respectively. The terms background

and foreground are used to indicate the intended printing side, which is considered

to be the foreground. Whereas we do not study printing related issues in this work,

making a clear distinction between the two sides of the paper is necessary as there are

papers that do not have similar topography characteristics on both sides of the paper.

An example of surface topography and its pixel intensity histogram are presented in

Figure 24. From this resolution we cannot see individual fibers but we can clearly

see that the surface is unevenly distributed as the surface structure contains hills

and valleys. Closer inspection reveals that there is also an apparent grid structure,

which may or may not be visible in different parts of the image. The pixel intensities

seem to have a near Gaussian distribution as can be seen from the pixel intensity

histogram. The same surface topography but now in frequency domain is presented

in Figure 25. Except a few spikes that are discussed later, the power spectrum

of the image seems close to circular which lead us to conclude that the surface

topography is isotropic, which means that the paper is similar to all directions. In

practice papers with anisotropic surface topographies are also common. We can also

see sharp frequency spikes around the centered DC peak. These frequency spikes

correspond to the grid pattern that we saw in the spatial domain. Although there is

some literature on the subject, it is not the place of the author to speculate whether

these frequency spikes represent the wire pattern or some other reflection of the

manufacturing process. The phase angle of the image seems to consist mostly of

random shot noise. Based on the pixel intensity distribution, the power spectrum,

and the phase angle we assume that the surface topography follows approximately

the stochastic laws of GRFs.

FIGURE 24: Example of surface topography from a 2.56cm× 2.56cm area of rough

paper type sheet B1 shown in spatial domain: measured image (left) and corre-

sponding pixel intensity distribution (right).



79

FIGURE 25: Example of surface topography from a 2.56cm× 2.56cm area of rough

paper type sheet B1 shown in frequency domain: power spectrum (left) and phase

angle (right).

Distribution of mass in a paper sheet can be measured with β-radiography. For

an introduction to use of β-radiography in paper science the reader is advised to

see for example (Banerjee, Bradley and Gelfand 2004, pp. 661-698). The measure-

ments are based, at least in our case, on a well known absorbtion law: β-rays are

known to attenuate and absorb in proportion to the total mass they pass through.

The composition of this mass does not affect the rays and we can model the absorb-

tion through formula

T = e−µw,

where T is a transmission factor, µ is an absorbtion coefficient that is constant for

all known paper components, and w is the basis weight, which is the amount of mass

that the beta rays have to penetrate. The wavelength of β-radiation is so large that

the rays do not scatter while passing through the paper sheet. With appropriate

scaling we obtain a mass distribution image

zmass = {zmass(x, y) : (x, y) ∈ D}.

An example of mass distribution and its pixel intensity histogram are presented

in Figure 26. This resolution is again insufficient to distinguish individual fibers

but the mass distribution has similar hills and valleys that we already saw in the

surface topograph. Based on visual observations the surface topography and the

mass distribution share similar kind of large scale structure, which concurs with

our intuition. An another observation is that the grid structure, which we saw

in the surface topograph, is not clearly visible in the mass distribution. The pixel

intensity histogram seems to follow the shape of the Gaussian distribution. The same
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example of mass distribution in frequency domain is presented in Figure 27. Again

the power spectrum is approximately circular implying that the mass distribution is

isotropic in this case. The grid inducing frequency spikes are also visible but with

lower intensity. This indicates that, albeit we did not see the grid in the spatial

domain, it is still present. The phase angle consists mostly of uninformative noise.

Although the phase angle is not totally random we can argue that based on the

pixel intensity histogram, the power spectrum, and the phase angle it seems that

the mass distribution follow loosely the laws of GRFs.

FIGURE 26: Example of mass distribution from a 2.56cm× 2.56cm area of rough

paper type sheet B1 shown in spatial domain: measured image (left) and corre-

sponding pixel intensity distribution (right).

In our study we use the surface topographies and the mass distributions to gen-

erate additional computational measurements. These computational measurements

give valuable insight to the paper structure but we must always understand that

some findings that we make may be artifacts of the computations instead of actual

physical relations that exist between the paper properties. If we know, and usually

we do, the mean thickness of the measured paper sheet, we can also obtain an es-

timate for the paper thickness distribution by adding centered surface topographies

to the mean thickness (see Figure 28). In analytical formulae, we have

zthickness(x, y) = zthickness
mean

+ (zforeground(x, y)− z̄foreground)

+ (zbackground(x, y)− z̄background) for (x, y) ∈ D,
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FIGURE 27: Example of mass distribution from a 2.56cm× 2.56cm area of rough

paper type sheet B1 shown in frequency domain: power spectrum (left) and phase

angle (right).
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FIGURE 28: Obtaining an estimate for thickness distribution based on background

and foreground topographies.

where zthickness
mean is the mean thickness of the paper and

z̄foreground =

∑
(sx,sy)∈D zforeground(sx, sy)

wimagehimage

and

z̄background =

∑
(sx,sy)∈D zbackground(sx, sy)

wimagehimage

.

As there may be some ill measured pixels in the topographies and as the thickness

cannot be negative, we threshold the thickness pixel values between zero and some

paper type specific maximum. From the mass and the thickness distributions we

can further estimate the density distribution by dividing the local mass by the local

thickness. In analytical formulae, we have

zdensity(x, y) =
zmass(x, y)

zthickness(x, y)
for (x, y) ∈ D. (16)

Again there may be some poorly measured pixels and thus we threshold the density

pixel values between zero and a paper type specific maximum.
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For research purposes we have obtained measurements from eight paper sheets,

four paper sheets of smooth paper type (sheets A1, A2, A3, and A4), and rough pa-

per type (sheets B1, B2, B3, and B4). During the measurements one paper sheet was

damaged and thus the smooth paper type actually has only three viable specimens.

The main difference between the two paper types is in the manufacturing process:

the smooth paper type is calendered (roughness Bendtsen 45ml/min) whereas the

rough paper type is coated (roughness Bendtsen 180ml/min). Example measure-

ments of the two paper types are presented in Figure 29 and Figure 30 respectively.

From these we can see how all the others, except the density, look very similar. The

density distribution seems to have smaller grains and to be more independent of the

other paper measurements.

All the measurements that were successfully completed, which is all but sheets

A4, seem to be without significant errors. Four of the most common errors, which

are not serious, are illustrated in Figure 31. The first image shows a patch that

is likely a result from a paper wrinkle. This wrinkle is present in all the sheets of

the smooth paper type (sheets A1, A2, and A3). The second image shows a patch

which origin cannot be determined. The images of the smooth paper type all have

multiple instances of such patches. The third image visualizes the type of stripes

that are present in the rough paper type sheet B1. The fourth image illustrates the

type of scan line measurement errors that are present in the rough paper type sheet

B2. A summary of observations from all the images is presented in Table 5. As

a conclusion we can state that unexplainable patches are present in all images of

the smooth type (sheets A1, A2, and A3) with the exception of mass distribution

images. In the rough paper type (sheets B1, B2, B3 and B4) we have clearly visible

grid structure in all the foreground topographies. For the rough paper type all the

mass distributions and their derivative density distributions show clear trending,

which was removed with the algorithm that is presented was section 2.2.2. All of

these and other visually observable errors are carefully marked and removed from

further analyzes (see Table 4). Hence the presented results are not affected by these

errors.

1. Obtain pixel correspondence with geometrical transformations.

2. Rescale to obtain zero mean (µ̂Z = 0) and unit variance (σ̂2
Z = 1).

3. Decompose into stochastic and deterministic components (for ex-

planation see the beginning of section 5.2).

4. Remove trending with median polishing.

5. Reject invalid image areas from taking part to the analyzes.

TABLE 4: An overview of the image preprocessing chain.
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GRID TREND PATCHES STRIPES OTHER

SHEET A1

Background X

Foreground X

Mass

Thickness X

Density X

SHEET A2

Background X

Foreground X

Mass

Thickness X

Density X

SHEET A3

Background X

Foreground X

Mass

Thickness X

Density X

SHEET B1

Background X

Foreground X

Mass X

Thickness

Density X

SHEET B2

Background X

Foreground X

Mass X

Thickness X

Density X X

SHEET B3

Background

Foreground X

Mass X

Thickness

Density X

SHEET B4

Background

Foreground X

Mass X

Thickness

Density X

TABLE 5: Four of the most common errors in the paper images.
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FIGURE 29: Examples of measurements from a 2.56cm× 2.56cm area of smooth

paper type sheet A1. Columns: measured image, pixel intensity histogram of the im-

age, power spectrum of the image, and phase angle of the image. Rows: background

topography, foreground topography, mass distribution, thickness distribution, and

density distribution.
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FIGURE 30: Examples of measurements from a 2.56cm× 2.56cm area of rough pa-

per type sheet B1. Columns: measured image, pixel intensity histogram of the im-

age, power spectrum of the image, and phase angle of the image. Rows: background

topography, foreground topography, mass distribution, thickness distribution, and

density distribution.
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FIGURE 31: Typical errors from 1cm× 1cm areas: a patch from a paper wrinkle

in the foreground topography of sheet A1 (left), a patch from an unknown source

in the foreground topography of sheet A1 (center left), stripes from the measuring

instrument in the background topography of sheet B1 (center right), and measure-

ment errors from the measuring instrument in the background topography of sheet

B2 (right).
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5.2 Parametric modeling of the paper images

In order to employ GRF modeling to our paper images we need to remove all de-

terministic structures as they cannot be explained by this family of models. The

foreground of rough paper type sheet B1 contains a clearly visible grid structure

and we use it to illustrate the decomposition process in which we separate the pulp

distribution induced stochastic component and the more deterministic grid compo-

nent from each other. This objective is approximately achieved with optimum notch

filtering (recall adaptive filtering from section 2.2.4) on the frequency spikes around

the centered DC peak (see Figure 32). First we place symmetric notch pass filters

over all grid frequencies and then transform the result back to spatial domain. This

yields us a spatial representation of the grid pattern. This pattern is not present in

all parts of the measured image and hence we use the rule of minimum local variance

to determine the amount of grid presence. As a result we obtain two images zstoc

and zdet that contain the stochastic and the deterministic components respectively.

For these images we have

z(x, y) = zstoc(x, y) + zdet(x, y) for (x, y) ∈ D.

An example of sheet B1 along with extracted stochastic and deterministic compo-

nents is presented in Figure 33. As we can see from the stochastic component, the

grid is not visible either in the spatial or in the frequency domain. The removed

grid is the only thing in the deterministic component. Hence we can consider the

stochastic component as an estimate of the original surface topography due to the

pulp distribution before the grid was mechanically pressed to it.

FIGURE 32: Extracting stochastic and deterministic components: applied notch

pass filter (left), extracted grid pattern (center left), calculated weight (center right),

and estimated grid presence (right).

Taking the stochastic component and fitting a GRF model based on an empirical

semivariogram yields a powerful model interpretation for the estimated pulp distri-

bution (recall our introduction to GRF in section 2.3.3). We assume that in all the

images the nugget effect is negligible (cZ = 0), and that the images are preprocessed

to show process expectation µZ = 0 and process variance, which is called process sill
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FIGURE 33: Extracted stochastic and deterministic components: the original mea-

surement image (above), the extracted stochastic component (center), and the ex-

tracted deterministic component (below). In columns we have the image, the pixel

intensity distribution of the image, the power spectrum of the image, and the phase

angle of the image in this order.

from now on, σ2
Z = 1. As the center area of (x, y) ∈ {150, . . . , 899} × {150, . . . , 899}

pixels is without errors in all the studied images we can use it for estimation. From a

tentative study it was seen that it is feasible to set the maximum transition (or lag)

to 60 pixels. In the estimation we benefit greatly from the fact that the properties

of both paper types are approximately isotropic, as it was argued in the previous

section. Although this approximate isotropy means that we can estimate the process

semivariogram based on one direction only, we increase robustness by using an alter-

native estimator that uses horizontal and vertical directions. For mathematical con-

venience we introduce a new subdomain Dvario = {150, . . . , 839} × {150, . . . , 839}
that is used to define the pixels that take part to the estimation. Formally the
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estimate at i pixels transition is obtained as

γ̂i =

(∑
(x,y)∈Dvario

(z(x + i, y)− z(x, y))2 + (z(x, y + i)− z(x, y))2

4|Dvario|
)

for i = 0, . . . , 60

(17)

where |Dvario| equals the number of pixels in the Dvario domain. This estimate is

simple the mean of horizontal and vertical classical estimators. The results from

smooth paper type sheet A1 and rough paper type sheet B1 are presented in Fig-

ures 34 and 35 respectively. A complete list of the semivariogram estimations is

presented in appendix A. The presented semivariogram plots contain both empirical

and theoretical semivariograms. The theoretical semivariograms are semivariograms

of parametric random field models that were presented in Table 2. For a moment

we focus on the empirical semivariograms only and the theoretical semivariograms

are ignored for the time being. Our first conclusion is that the empirical semivar-

iograms of smooth and rough paper types are distinctively different between the

paper types. For both paper types the empirical semivariograms of background and

foreground topographies look similar but the corresponding mass distributions are

clearly different.

Next we evaluate empirically the process ranges, that is the maximum distances

beyond which the correlation between two pixels is negligible, for the paper prop-

erties. From our methodological perspective this is interesting because from the

process range we get valuable insight into the extent of spatial correlation in each

image. Hence we can make more educated selection for the size of the local areas

that are used for the correlation estimates. We estimate the process range in an ad

hoc manner by taking the smallest spatial transition from which the five consecutive

semivariogram estimates are close to process sill. Formally this is written as

âZ = arg min
i

( 4∑
j=0

|1− γ̂i+j|
)

< 0.2.

According to visual inspection in our case this technique is capable of estimating

the correct process range.

The obtained results are presented in Table 6. It seems that all the topographies

have their process range between 3.5mm - 4.5mm, whereas the process ranges for the

mass distributions are between 2.5mm - 3.5mm, which is considerably less that the

topographies have. This difference may help in explaining the forthcoming results

should they favor the topographies. The process ranges of the thickness distributions

range between 4.0mm - 4.7mm, which is approximately the same with respect to

the topographies. This concurs with intuition as the thickness is estimated from the

topographies. The reasons behind the slight increase in range, which is observed in

some sheets, with respect topographies are not clear to us. Our hypothesis, which we

cannot substantiate at the moment, is that estimating the thickness distribution from

the two topographies generates additional value, that is the thickness distribution

is more informative with respect to the generating process than the topographies
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are on their own, which shows as an increase in spatial correlation. The process

ranges of the density distributions are approximately 1.0mm for the smooth paper

type, and approximately 0.5mm for the rough paper type. These process ranges

are considerably less than they are for the other paper properties. On the other

hand the process range of the density distributions are the only ones that are clearly

distinctively different between the two paper types. By this we mean that the

obtained process ranges separate the studied images into two clearly separable classes

according to the paper type. Based on the estimated process ranges we can conclude

that in our case observing 3.0mm - 4.0mm local areas should make an adequate

choice for further analyzes. From theoretical perspective using larger local areas

than this should yield only modest improvement.

A1 A2 A3 B1 B2 B3 Distinctive

Background 43 39 41 45 38 42 no

Foreground 44 41 40 41 40 35 no

Mass 29 27 28 34 31 27 no

Thickness 47 44 43 44 41 42 no

Density 11 10 11 6 7 6 yes

TABLE 6: Empirically estimated process ranges for the paper sheets. All ranges

are given in pixels that in real world scale equal to tenths of millimeters. The

distinctive column indicates whether a row of results is distinctively different between

the smooth and the rough paper types.

Then we fit parametric models (recall section 2.3.3) to the empirical semivar-

iograms that we have estimated from the stochastic components. From method-

ological perspective this serves us as the shape of the semivariogram gives us a

geometrical understanding of the image. The model parameter s, which should not

to be confused with process range aZ (recall Table 2 on page 39), can be used as a

measure of scale in the images. Larger values of s correspond to larger scale spa-

tial structures as can be seen from Figure 36. For each model the parameter s is

estimated using least squares fitting for the first twenty empirical semivariogram

estimates γ̂i : i = 1, . . . , 20, which were obtained from equation 17. The choice to

use twenty estimates makes an acceptable compromise between small and large scale

fitting. Formally the estimate is written as

ŝ = arg min
s

20∑
i=0

(γ(i|s)− γ̂i)
2, (18)

where γ(i|s) is a parametric model semivariogram, which is calculated from Table 2

with transition ||t|| = i pixels and scaling s. According to visual observations, some

of which can be made from Figures 34 and 35, this yields good model fits to our

data.

The obtained results are presented in Table 7. For the topographies it seems

that the calendered smooth paper (type A) obtains distinctively smaller parameter

s values than the coated rough paper (type B). This is consistent with the spatial
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interpretation for the parameter as given above. For the mass distributions the sit-

uation is reversed, the smoother paper type obtains larger parameter s values than

the rough paper type, which is interesting as both intuition and visual observations

would suggest that the topographies and the mass distributions were closely con-

nected. We can only hypothesize that the postprocessing of the dry weight profile,

which we assume is approximately similar for both paper types, is playing a role

here. Calendering is known to remove water from thick areas of the dry weight pro-

file, whereas coating adds new mass to thin areas of the dry weight profile. For the

thickness distributions both paper types obtain similar parameter s values. The ex-

planation behind this in not know to us at the moment. Only the hyperbolic model

is able to make, albeit an unreliable, distinction between the two paper types. As

for the density distributions, their parameter s values behave consistently with the

corresponding mass distributions although approximately in four times smaller scale

scale. Based on the modeling results, which show a clear distinction between the

paper types, we are optimistic that also further analyzes should be able to see dif-

ferences between the smooth and the rough paper types. The spatial understanding

of the images, coming from the shape of the covariance structure and the scaling

parameter s, can be used to justify interpretations of forthcoming results. As a

sidenote, we are inclined to believe that, should there be a need for a paper type

classifier and results from a larger experiment were available, this would be a fruitful

platform for a Bayesian classifier.

A1 A2 A3 B1 B2 B3 Distinctive

Background

Spherical 16.621 16.877 19.206 28.365 23.663 23.684 yes

Exponential 6.765 6.827 7.455 12.338 9.451 9.554 yes

Hyperbolic 3.085 3.131 3.492 7.530 5.082 5.210 yes

Foreground

Spherical 15.962 17.240 17.711 20.880 19.502 19.208 yes

Exponential 6.586 6.899 7.033 8.142 7.722 7.612 yes

Hyperbolic 2.987 3.168 3.249 4.106 3.848 3.786 yes

Mass

Spherical 17.233 17.418 18.294 14.299 12.594 13.284 yes

Exponential 7.072 7.122 7.463 6.137 5.626 5.733 yes

Hyperbolic 3.661 3.688 3.918 2.935 2.666 2.720 yes

Thickness

Spherical 25.754 26.097 27.028 28.374 26.846 25.638 no

Exponential 10.360 10.589 11.114 12.330 11.292 10.736 no

Hyperbolic 5.596 5.789 6.188 7.507 6.563 6.213 yes

Density

Spherical 4.681 4.750 5.248 4.207 4.107 4.038 yes

Exponential 2.038 2.065 2.250 1.753 1.734 1.693 yes

Hyperbolic 0.837 0.834 0.923 0.715 0.700 0.674 yes

TABLE 7: Empirically estimated parametric models for the paper sheets. For each

measurement image we have three parameter s values for spherical, exponential, and

hyperbolic models respectively. The distinctive column indicates whether a row of

results is distinctively different between the smooth and the rough paper types.

Next we estimate the shape of the covariance structure for each image based on

which of the three parametric models obtained the smallest sum of squared errors
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(SSE) from equation 18. The chosen covariance structures are presented in Table

8. It seems that the topographies and the thickness distributions are described

quite well by the hyperbolic covariance structure, which is heavily tailed and has

theoretically an infinite process range (see Figure 37). This means that spatial

correlations may not be as strong in smaller scales as they are with other models

but instead they do extend further into larger scales. The only exception is the

background profile of sheet B2, where the estimated semivariogram is explained

almost equally well by the hyperbolic model. For the mass distributions it seems

that the smooth paper type is best described by exponential covariance structure,

whereas the rough paper is most similar to hyperbolic covariance structure. This

means that the covariance structures of mass distributions are distinctively different

between the two paper types whereas this is not the case with the topographies.

The exponential covariance structure can be considered as a kind of standard

covariance structure as it has an average process range (see Figure 37). This means

that we have normal spatial correlations in small scales and that the maximum scale

of the large scale correlations is bounded. In the image this shows as stochastic

landscape with hill ranges and valleys (see Figure 36). In case of the density dis-

tributions it seems that the smooth paper type is similar to exponential covariance

structure whereas the rough paper type is most similar to spherical covariance struc-

ture. This is undoubtedly a result of the differences of covariance structures of the

mass distributions.

The spherical covariance structure is very short tailed (see Figure 37). This

means that we have good spatial correlations in small scale whereas large scale

spatial correlations are nonexistent. In the images this shows as grainy, almost

noisy, structures where the lack of large scale structure is evident even to a naked

eye. Based on the shapes of the covariance structures we should conclude that the

difference between the two paper types is more a result of the mass distributions

than it is of the topographies – unless the difference is explained solely by the

removed grid structure. This conclusion is inconsistent with our prior knowledge

of the papers where the aim of the postprocessing is to smoothen the topographies

and the obtained results are quite different according to independently conducted

roughness Bendtsen measurements (45ml/min versus 180ml/min for smooth and

rough paper types respectively). Obtaining a solution to this dilemma requires more

application expertise than we have at the moment and hence the question is left open

for further study.

Finally we study the paper measurements through correlograms and cross-

correlograms using 0mm - 4mm transitions. These correlograms are shown in Fig-

ures 38 and 39. The former figure compares the different paper sheets from the

perspective of different paper properties whereas the latter figure compares the dif-

ferent paper properties from the perspective of different paper sheets. While both

of these images contain the same information, the former is easier to read. There-

fore, we present our findings through Figure 38. In the plot matrix the diagonal

plots show correlograms that measure the amount of spatial correlation within the
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A1 A2 A3 B1 B2 B3 Distinctive

Background Hyperbolic Hyperbolic Hyperbolic Exponential Hyperbolic Hyperbolic no

Foreground Hyperbolic Hyperbolic Hyperbolic Hyperbolic Hyperbolic Hyperbolic no

Mass Exponential Exponential Exponential Hyperbolic Hyperbolic Hyperbolic yes

Thickness Hyperbolic Hyperbolic Hyperbolic Hyperbolic Hyperbolic Hyperbolic no

Density Exponential Exponential Exponential Spherical Spherical Spherical yes

TABLE 8: Empirically estimated shape of the covariance structure for the paper

sheets. For each measurement image we choose the shape that obtains the smallest

sum of squared errors (SSE) from equation 18. The distinctive column indicates

whether a row of results is distinctively different between the smooth and the rough

paper types.

images. These are just an alternative way of presenting the semivariograms, some

of which were already shown in Figures 34 and 35, and hence lead into the same

conclusions as we made above. The off-diagonal elements show cross-correlograms

that measure the amount of spatial correlation between the images. These have not

been analyzed as of yet and as the understanding of the cross-covariance structures

is important with respect to evaluation of the proposed methodology we do it here.

It seems that the cross-correlograms between the surface topographies and the

thickness distributions are as strong and extends as far as the correlograms within

these images. The only noticeable difference between these correlograms and cross-

correlograms is that the cross-correlograms show nugget effects (the left hand side

limits of the correlograms are clearly not equal to 1). These nugget effects mean

that there are small scale discontinuities in the cross-covariance structure of the

images. We are confident that these nugget effects are results from not having

complete pixel correspondences between the images instead of actually having such

discontinuities between the paper properties. The fact that the diagonal plots do

not show similar nugget effects supports this conclusion. An another observation

is that these correlograms and cross-correlograms are distinctively different for the

calendered smooth paper (type A) and the coated rough paper (type B).

For the mass distributions on the other hand it seems that the cross-

correlograms with the surface topographies and with the thickness distributions

are even stronger than the correlograms are within the mass distributions, with the

exception of the nugget effect that is seen in these cross-correlograms as well. This

is a somewhat unexpected result and at the moment we are unable to provide an

explanation for it. We assume that the stronger cross-correlations are seen because

of the larger process ranges that the surface topographies and thickness distributions

have when compared to the mass distributions, recall Table 6, but on the other hand

we are unable to offer any physical justification for this phenomenon. In addition

it seems that based on these correlograms and cross-correlograms we are unable to

make distinctions between the smooth and the rough paper types.

Based on the above conclusions we are confident that there are measurable

dependencies between the images and now feel ready to start using the proposed
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methodology. For the density distribution it seems that the cross-correlations are

negligible except with mass distributions with which we can see correlations in small

scales. It is unlikely that the proposed methodology could find strong dependencies

between the density and the other paper properties. Hence we need to be conserva-

tive in our conclusions about the dependencies with the density distribution.
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FIGURE 34: Semivariograms for calendered smooth paper type sheet A1: the origi-

nal measurement image (left), the extracted stochastic component (center), and the

semivariograms for the pulp component (right). Rows consist of background and

foreground topographies along with mass, thickness, and density distributions in

this order.
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FIGURE 35: Semivariograms for coated rough paper type sheet B1: the original

measurement image (left), the extracted stochastic component (center), and the

semivariograms for the pulp component (right). Rows consist of background and

foreground topographies along with mass, thickness, and density distributions in

this order.
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FIGURE 36: Effect of parametric model parameter s. The three images show an

exponential model with parameter s = 1 (left), s = 4 (center), and s = 16 (right).
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FIGURE 37: Parametric model covariance structures for spherical, exponential, and

hyperbolic models. All the visualized models use scaling parameter s = 5.
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FIGURE 38: Empirical correlograms for different paper sheets from the perspective

of different paper properties. Columns and rows select the two paper properties

between which the dependency is measured whereas the line type indicates the paper

type. The horizontal axes indicate spatial transitions from 0.0mm to 4.0mm, which

correspond to 0− 40 pixels, and the vertical axes measure the amount of observed
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99

BACKGROUND

TOPOGRAPHY

FOREGROUND

TOPOGRAPHY

MASS

DISTRIBUTION

THICKNESS

DISTRIBUTION

DENSITY

DISTRIBUTION

1

0

1

0

1

0

1

0

1

0

1

0

S
H

E
E

T
 A

1
S

H
E

E
T

 A
2

S
H

E
E

T
 A

3
S

H
E

E
T

 B
1

S
H

E
E

T
 B

2
S

H
E

E
T

 B
3

FIGURE 39: Empirical correlograms for different paper properties from the perspec-

tive of different paper sheets. Columns and line type select the two paper properties

between which the dependency is measured whereas the row indicates the paper

type. The horizontal axes indicate spatial transitions from 0.0mm to 4.0mm, which

correspond to 0− 40 pixels, and the vertical axes measure the amount of observed

correlation.



100

5.3 Simulations and visual inspections

The results that have been analyzed thus far seem very consistent. In order to

validate the obtained results and the made conclusions we check them visually by

studying the goodness of the parametric model fits through the visual differences

between the empirical and theoretical semivariograms, and the visual differences

between measurement images and their simulations. As we stated in the previous

section, the paper properties are only approximately Gaussian. Even further, it

is unrealistic to assume that any real world data would obey a theoretic model

exactly, and thus observing only the first two moments of the data distribution

may not be enough to give an accurate description. We have found that using

the parametric models to simulate new measurement images and making visual

comparisons between the real world images and their simulations yields a good

understanding of how well the model is able to describe the data and also on the

phenomena that are and are not captured by the model.

Due to the large amount of simulations only four examples are presented in Fig-

ure 40. From these examples we can see that the parametric model is able to capture

the geometric nature of the images. Visual observation of foreground topography

of sheet A2 indicates that the measurement image contains a large scale material

structure along with small scale variation, which may be a result of measurement

noise. As we did not do hierarchical modeling the scale of our simulation is between

those large and small scale phenomena. The simulations of mass distribution of

calendered smooth paper sheet A2 seem to be very successful. If it was not known a

priori which of the images were simulated, picking the original measurement image

would be very difficult. The foreground topography of coated rough paper sheet B2

shows how the simulations ignore the grid pattern that was removed at the beginning

of this section. Again it seems that the simulated images have scale that are between

the small scale and the large scale structures of the original measurement image –

even though the grid was removed. As a conclusion we can state that the simula-

tions seem visually similar to the measurement images but when the measurement

images contains phenomena of different scales the scale of the simulation images is

likely not correct. An improvement would be to use hierarchical modeling, which

is almost as easy to implement as the presented non-hierarchical approach. As we

are satisfied with the currently obtained results, we leave the hierarchical modeling

subject to further study.

From the visual observations, which we analyzed above, we re-evaluated the

computationally estimated results on the shapes of the covariance structures (as

presented in Table 8). The re-evaluated results are presented in Table 9. With

respect to surface topographies and thickness distribution, which is their deriva-

tive, the prior made conclusions seem valid without revisions. For the calendered

smooth paper (type A) the semivariogram fits are not perfect in 0.2mm - 0.5mm

range, whereas for the coated rough paper (type B) the hyperbolic model is over-

estimating the spatial correlation above 2.0mm scale. The results from the mass
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distributions, which have a good semivariogram fit for all scales, on the other hand

seem more inconclusive as both exponential and hyperbolic models are able to pro-

duce approximately the same result. Although the computationally estimated best

shapes of the covariance structures do seem better than the corresponding second

best shapes, the difference is not as clear as it is with the surface topographies. In

fact the difference between the selected and the second best covariance structures

is so small that it approaches the level when the difference can be explained with

stochastic variation. The same phenomena is naturally transferred into the density

distributions for which the rough paper type (sheets B1, B2, and B3) are indecisive

between the spherical and the exponential models. Combined with the unexplained

inconsistency with what explains the difference between the two paper types (as dis-

cussed two paragraphs above), it seems that in order to fully understand the effect

of mass distribution more research and application expertise is needed.

A1 A2 A3 B1 B2 B3 Distinctive

Background Hyperbolic Hyperbolic Hyperbolic Hyperbolic Hyperbolic Hyperbolic no

Foreground Hyperbolic Hyperbolic Hyperbolic Hyperbolic Hyperbolic Hyperbolic no

Mass Exponential Exponential Exponential Hyperbolic Hyperbolic Hyperbolic inconclusive

Hyperbolic Hyperbolic Hyperbolic Exponential Exponential Exponential

Thickness Hyperbolic Hyperbolic Hyperbolic Hyperbolic Hyperbolic Hyperbolic no

Density Exponential Exponential Exponential Spherical Spherical Spherical inconclusive

Exponential Exponential Exponential

TABLE 9: Visually inspected shape of the covariance structure for the paper sheets.

For each measurement image we choose the shape that based on semivariograms and

simulations seems visually the most compatible. The distinctive column indicates

whether a row of results is distinctively different between the smooth and the rough

paper types.



102

FIGURE 40: Example simulations of paper images. Columns: foreground topogra-

phies of smooth paper type sheet A2, mass distributions of smooth paper type sheet

A2, foreground topographies of rough paper type sheet B2, and mass distributions

of rough paper type sheet B2. Rows: original measurement images, 1st simulations,

2nd simulations, 3rd simulations, and 4th simulations.
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5.4 Explanations behind the spatial correlations of the pa-

per images

As a natural continuation to the previous section we study the dependencies be-

tween paper properties on spatial scales 0.75mm - 4.00mm using the proposed CCA

method, which was introduced in chapter 3. This is an entirely different approach

for analyzing spatial correlations than what was used in the previous section. The

presented analysis is based on N = 10000 observations that are partitioned into

Ntr = 5000 training and Nval = 5000 validation observations, and on wlocal = 10 pix-

els times hlocal = 10 pixels subimages with the subimage to image scaling factor r

ranging in [0.75, 4.00].

The estimated correlation functions, which are computed with the proposed

CCA methodology, are shown in Figures 41 and 42. These figures are organized in

the same way as Figures 38 and 39: Figure 41 compares the different paper sheets

from the perspective of different paper properties, whereas Figure 42 compares the

different paper properties from the perspective of different paper sheets. Again both

of these figures contain the same information and hence the same conclusions can

be made from either figure. In order to ease seeing the differences between the

calendered smooth (type A) and the coated rough (type B) papers and between

different spatial scales, proposed correlation coefficients from 1mm, 2mm, and 4mm

spatial scales are presented in Table 10.

From the estimated process ranges we concluded that spatial scales 3.0mm -

4.0mm should have the highest correlations between most of the paper properties.

Based on the presented correlation functions, see Figures 41 and 42, it seems that

the highest correlations are in 2.5mm - 4.0mm spatial scales. The only exception is

found from the process ranges of the density distributions, which were shown to be in

0.5mm - 1.2mm. These are also the spatial scales that show the highest correlations

for the density distribution. These observations support our previous conclusion:

the process ranges and the highest correlating local image areas are approximately

of the same spatial scale. Enlarging the observed local image areas beyond the scale

of the process range seems to be harmful. The physical explanation for this seems

clear: the process range defines the spatial scale of the present material structures

in the images. Too small subimages are unable to represent these structures in the

most efficient way, and too large subimages are impractical as the structures from

the further corners of the subimages are no longer correlated.

It seems that with respect to both surface topographies and thickness distri-

bution these three paper properties have a bit stronger correlation with the coated

rough paper type (type B) than with the calendered smooth paper type (type A).

This fits with our prior knowledge of how the dry weight profiles of the sheets are

postprocessed. The surface topographies of the smooth paper type, which have

roughness Bendtsen value 45ml/min, experience heavy changes during the mechan-

ical compression of the calendering and seem to some extent lose their connection

to the original pulp distribution of the dry weight profile. The surface topographies
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of the rough paper type, which have roughness Bendtsen value 180ml/min, do not

have to sustain such a rough treatment and hence they are able to retain more of

their original distributions from the dry weight profile. The same conclusion can

be made from the estimated model scale parameters (Table 7) for which the rough

paper type obtains larger values, which likely mean that originally there are larger

correlating material structures that are destroyed in the calendering process.

When the surface topographies and the thickness distributions are compared

with the mass distributions the situation seems to be reversed: the surface topogra-

phies of the calendered smooth paper type (type A) have stronger correlations with

the mass distributions than the coated rough paper type (type B) has. This phe-

nomenon is clear below 2mm scales. We believe, but based on our own research

are not able to substantiate, that this is because of the coating, which adds a filler

substance to the holes and valleys of the surface topographies. The physical proper-

ties of this filler are usually different from those of the pulp mass of the dry weight

profile. This means that the correlation between the mass distributions of the dry

weight profile and the processed paper diminishes and hence the connection between

the surface topographies and the mass distribution of the postprocessed paper is also

weakened. This conclusion is supported by the lower model scale parameters val-

ues (Table 7), which mean that the calendered smoother paper type has spatially

larger mass structures than the coated rough paper type has. Unfortunately a vi-

sual confirmation of this conclusion is difficult and all that we can say is that the

mass distribution of the rough paper type looks more grainy in small scales, which

is consistent with our conclusion. An another interesting observation is that there

seems to be a stronger correlation between the two surface topographies themselves

than between them and the mass distribution. Physically this seems unjustified as

the mass lies between the two surfaces. The only plausible explanation that we

can think of is that the two topographies are measured with the same measuring

instrument whereas the mass distribution is measured with a different instrument

and using a lower spatial resolution.

Based on our results it seems that the calculated thickness distribution outper-

forms the two measured surface topographies. This is especially especially below

2mm scales as in larger scales than this the difference is observable but consider-

able smaller. In smaller scales the surface topographies are relatively independent,

but they both are heavily correlated with the estimated thickness distribution. We

cannot reliably quantify how much of this dependency is a result of the computa-

tional equation that we used to calculate the thickness. In addition the thickness

distribution seems to have higher correlation with the mass distribution. This leads

us to conclude that the thickness distribution is more informative with respect to

the underlying material structure than the surface profiles are on their own. As a

parallel conclusion was already made from the process ranges, we are inclined to

believe in this explanation.

Perhaps the most surprising result comes from the observed dependencies with

respect to the density distribution. As the density distribution is estimated compu-
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tationally from the other measurements, we cannot quantify reliably how much of

the observed dependency comes artificially from equation 16. Hence we need to be

conservative in our conclusion for the application perspective. From the methodolog-

ical perspective on the other hand the obtained results seem very interesting. Based

on visual observations the density distributions of both paper types look grainy and

somewhat independent of the other paper properties (see Figures 34 and 35). The

estimated process ranges tell us that spatial correlations exist in below 0.5mm -

1.2mm scales, and based on the estimated cross-correlograms there seemed to be

next to no spatial correlations with respect to the other paper properties. Hence it

is surprising that the proposed CCA method is able to see spatial correlations in all

scales of the smooth paper type. The role of the smoothness is easy to understand

as the smoother the surfaces are the closer the density is to the mass distribution,

the scaling of the pixel values being the main difference. An absolutely smooth pa-

per would show exactly the same amount of spatial correlation with respect to both

mass and density distributions. From our methodological design, recall chapter 3,

we know that the observed levels of correlation that are computed via the proposed

CCA method cannot be explained by chance. Hence we must conclude that assess-

ing the dependency through visual observations can be deceptive as the human eye

seems to be unable to see certain types of dependencies.

Due to the large number of combinations of image pairs we are unable to present

spatial interpretations for all of them. Instead we select only two of them based on

how interesting they are from the methodological perspective. Visualizations of de-

pendency between foreground topography and mass distribution, and foreground

topography and density distribution of the coated rough paper type sheet B1 are

presented in Figures 43 and 44 respectively. Of these Figure 43 illustrates a typical

observed dependency. In this case the observation points are clearly lined on the

diagonal and the regression model seems like a good fit to the observation points.

The corresponding subimage pairs within all three groups seem to show similar spa-

tial structures and the subimage pairs in left and right groups are also somewhat

similar. With respect to our paper application we can interpret these subimage pairs

so that, as the dark areas represent holes and valleys in the foreground topography

and low amount of mass in the mass distribution, there are round holes of 0.25mm

- 1.00mm radius in the surface that are a result of low amount of pulp and filler

in those regions. This indicates that the coating procedure was unable to smooth

out the roughness of the dry weight profile. As a conclusion, which is based on all

the obtained results, we can say that in most cases the proposed CCA method is

able to measure the amount of dependency, and to provide a clear physical inter-

pretation for this reasons behind the dependency. To show an exception Figure 44

presents a case where the CCA method was unable to find clear dependencies, as

we already saw from Figures 41 and 42. As we can see, the dependency between

the observation points is almost nonexistent and the regression model is unable to

explain these points. This reflects to the subimage pairs, which no longer show

similar spatial structures, and hence it is also impossible to try to build any kind
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FIGURE 41: Estimated CCA correlation functions for different paper sheets from

the perspective of different paper properties. Columns and rows select the two

paper properties between which the dependency is measured whereas the line type

indicates the paper type. The horizontal axes indicate size of the observed local

areas from 0.75mm× 0.75mm to 4.00mm× 4.00mm and the vertical axes measure

the amount of observed dependency.

of physical interpretation. In the current analysis problems like this were limited

to the density distribution of the rough paper type. The explanation might be in

the role of coating, or because the relation between density and the other studied

properties is nonlinear. Nonlinearities are not handled well by the proposed version

of the methodology and appropriate improvements are suggested in the discussion



107

BACKGROUND

TOPOGRAPHY

FOREGROUND

TOPOGRAPHY

MASS

DISTRIBUTION

THICKNESS

DISTRIBUTION

DENSITY

DISTRIBUTION

1

0

1

0

1

0

1

0

1

0

1

0

S
H

E
E

T
 A

1
S

H
E

E
T

 A
2

S
H

E
E

T
 A

3
S

H
E

E
T

 B
1

S
H

E
E

T
 B

2
S

H
E

E
T

 B
3

FIGURE 42: Estimated CCA correlation functions for different paper properties

from the perspective of different paper sheets. Columns and line type select the

two paper properties between which the dependency is measured whereas the row

indicates the paper type. The horizontal axes indicate size of the observed local

areas from 0.75mm× 0.75mm to 4.00mm× 4.00mm and the vertical axes measure

the amount of observed dependency.
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A1 A2 A3 B1 B2 B3 Distinctive

Background

Foreground

1mm 0.327 0.331 0.364 0.567 0.411 0.634 yes

2mm 0.593 0.587 0.625 0.786 0.574 0.796 no

4mm 0.706 0.715 0.742 0.820 0.689 0.818 no

Background

Mass

1mm 0.478 0.501 0.510 0.348 0.364 0.392 yes

2mm 0.598 0.606 0.618 0.681 0.657 0.684 yes

4mm 0.677 0.688 0.706 0.788 0.759 0.783 yes

Background

Thickness

1mm 0.745 0.759 0.756 0.760 0.736 0.768 no

2mm 0.793 0.797 0.800 0.851 0.790 0.865 no

4mm 0.831 0.829 0.831 0.898 0.839 0.894 yes

Background

Density

1mm 0.533 0.524 0.501 0.128 0.187 0.185 yes

2mm 0.485 0.463 0.427 0.107 0.183 0.212 yes

4mm 0.304 0.298 0.269 0.132 0.136 0.163 yes

Foreground

Mass

1mm 0.545 0.513 0.547 0.439 0.439 0.462 yes

2mm 0.647 0.629 0.657 0.638 0.525 0.666 no

4mm 0.705 0.708 0.713 0.738 0.630 0.750 no

Foreground

Thickness

1mm 0.735 0.738 0.744 0.875 0.810 0.825 yes

2mm 0.788 0.787 0.799 0.884 0.853 0.881 yes

4mm 0.823 0.833 0.841 0.910 0.874 0.904 yes

Foreground

Density

1mm 0.501 0.469 0.483 0.199 0.258 0.255 yes

2mm 0.413 0.418 0.386 0.132 0.152 0.125 yes

4mm 0.306 0.268 0.288 0.152 0.130 0.129 yes

Mass

Thickness

1mm 0.618 0.617 0.651 0.459 0.498 0.482 yes

2mm 0.700 0.706 0.711 0.651 0.625 0.692 yes

4mm 0.737 0.748 0.752 0.780 0.709 0.779 no

Mass

Density

1mm 0.744 0.764 0.771 0.763 0.752 0.711 no

2mm 0.625 0.656 0.682 0.853 0.827 0.803 yes

4mm 0.600 0.631 0.664 0.835 0.830 0.789 yes

Thinkness

Density

1mm 0.791 0.760 0.726 0.214 0.318 0.274 yes

2mm 0.679 0.659 0.586 0.116 0.176 0.186 yes

4mm 0.461 0.402 0.370 0.133 0.121 0.134 yes

TABLE 10: Estimated CCA correlations in 1mm, 2mm, and 4mm scales. The

distinctive column indicates whether a row of results is distinctively different between

the smooth and the rough paper types.

of chapter 3.

Based on all the findings that we have made in this section, it seems that the

thickness distribution is the paper property that best characterizes a paper sheet.

It has a strong spatial correlation to all other paper properties, with the exception
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FIGURE 43: Visualization of dependency between foreground topography and mass

distribution of rough paper type sheet B1 (for interpretation recall section 3.5): a

scatter plot of observations with a regression model (left) and a spatial interpreta-

tion for this regression model (right). Each 10× 10 pixels subimage represents a

4mm× 4mm area paper measurement.

foreground topography

d
e
n
si

ty
 d

is
tr

ib
u
ti
o
n

left group

middle group

right group

FIGURE 44: Visualization of dependency between foreground topography and den-

sity distribution of rough paper type sheet B1 (for interpretation recall section 3.5):

a scatter plot of observations with a regression model (left) and a spatial interpre-

tation for this regression model (right). Each 10× 10 pixels subimage represents a

1mm× 1mm area paper measurement.

of density distribution for which the reasons were already discussed above. Un-

fortunately measuring the thickness distribution is problematic and hence where it

the case that only one measurement could be conducted, we are inclined to recom-

mend measuring the mass distribution, which gives a more detailed description of
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the sheet than either of the surface topographies are able to give on their own. As

measuring the mass distribution is also the de facto approach in the paper industry,

making such measurements is relatively easy and there is abundance of literature

from previous studies that concentrate solely on mass distribution that can be used

to evaluate newly obtained measurements.

5.5 Discussion

In this chapter we have performed an example data analysis using our methodol-

ogy (chapter 3) and our example implementation (chapter 4) on our paper images

(chapter 1 and 5). First we introduced our paper measurement images and how they

were preprocessed for the analyzes. Then we conducted a tentative study where we

modeled the images with parametric Gaussian random field models. These models

where then used to simulate new images from which we were able to make a visual

assessment of how well each model was able to explain the modeled image. From all

this we obtained a good understanding of the contents of each image. This under-

standing of the images was considered important in order to learn how the proposed

methodology works in a real world setting. This was one of the main goals of this

chapter. In section 1.3 we presented the three spatial correlation measures that are

studied in this thesis. Based on our research we can now assess the strengths and

the weaknesses of these dependency measures.

The strengths of the correlation between pixel values, which we call pixel corre-

lation, are simplicity and straightforwardness. In an ideal case it measures exactly

the thing that we are interested in and hence it is easy to motivate and to under-

stand. In a real world case the weaknesses of the pixel correlation on the other hand

are plentiful: spatial distortions, measurement errors, and noise can easily render

this approach useless. Whereas to some degree it is possible to remedy the effects of

measurement errors in pixel values through robust correlation estimates, there is no

known salvation from spatial distortions that can very effectively hide any existing

dependency. In practice measurement images tend to contain all of these errors and

hence the applicability of this methodology in a real world setting is questionable.

In addition the obtained result does not help us to understand spatial correlations

between the studied images. In this thesis the pixel correlation was considered un-

worthy based on our tentative study and was not even included in the actual analysis

that was presented in this chapter.

The strengths of the semivariogram and the correlogram lie in their solid the-

oretical foundation and their well established position in the statistical community.

A considerable advantage is that we have a family of theoretical parametric models

that can be used to explain the image contents with only a few scalar values (the

model parameters). These models can then be used to simulate new measurement

images. As for the weaknesses there are at least two with substantial consequences.

The semivariogram and its derivatives are susceptible to lack of pixel correspon-

dence. The presence of any geometric distortions render the obtained estimates
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theoretically unfounded and hence it is questionable to make further inference on

them. This problem simply was not considered in the original problem settings

that was used to derive the methodology. An another problem is with measurement

noise, which affect the obtained results as the estimators do not include any type of

spatial smoothing. Regardless of these shortcomings the semivariogram and the cor-

relogram represent the state of the art in a short list of available spatial correlation

measures and hence they were included in our example analysis.

The strengths of the proposed CCA correlation coefficient and CCA correlation

function are in interpretability and robustness towards noise and lacking pixel corre-

spondence. At least from the perspective of our paper application we can argue that

the proposed CCA correlation measure is able to answer the posed questions unlike

the other two studied correlation measures. By this we mean that the methodology

yields a spatial description of the structures that are correlated between the images.

The ability to measure the amount of dependency in different spatial scales is impor-

tant in many real world applications. There are also a few noticeable shortcomings

with the most important being the current lack of rigorous analytical analysis of

the proposed methodology. In addition there are no theoretical models that could

explain the content of the image and that could be used for simulations. Depending

on the implementation the estimation of the proposed CCA correlation measure is

also computationally heavier, which means that the results are not available as fast

as they are from the other two approaches.

As a summary we can state that the pixel correlation is next to useless in a

real world setting. The second-order correlation is theoretically justified but may

break down in many real world situations. The proposed CCA correlation measure,

although not analytically analyzed as of yet, is more interpretable and robust in

real world situations. The geometrical interpretations of the latter two are different

and hence rather than competing they complement each other. Giving an example

of how to use these two together to build a more complete picture of the studied

phenomenon was the other main goal of this chapter.
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6 SUMMARY

The objective of this thesis is to study all aspects of spatial correlations between

images that have stochastic content. It is assumed that there is an underlying

generator process that induces all the images but that each image exhibits slightly

different aspects from that process. Hence in order to study the generating process,

we must find a way to combine information from all the available images and based

on that try to build an understanding of the process characteristics. This is an

example of classical statistical inference that is expanded to multivariate spatial

data analysis.

Our work is motivated and demonstrated with a real world application that is

raised from the paper making industry. The objective of the application is to design

an experiment for studying dependencies between five paper properties: background

and foreground topographies along with mass, thickness, and density distributions.

From our partner we have obtained a data set that contains these measurements

from eight paper sheets that come from two clearly different paper types. The

experiment was designed so that we can study similarities that exist between the

sheets of the same type and on the other hand the dissimilarities that exist between

the sheets of the two paper types.

The development of the proposed methodology began from a tentative study

that showed clearly that modeling dependencies between single pixel values yields

inadequate results. On the other hand the stochastic content and the mere size

of the images made us think that processing the images as a whole would be too

complex a problem. Instead we proposed that decomposing the images into small

and simple subimages would solve both the theoretical and the computational issues

that are blocking the two extreme approaches. The proposed methodology takes two

images and measures the amount of spatial dependency between them with a single

scalar value. For this value the methodology yields confidence bounds that can be

used to evaluate the obtained result. As an essential part of the methodology, four

visualization techniques were also introduced.

In order to evaluate the proposed methodology and to use it to analyze the paper

measurement data we needed a computer implementation for it. For this purpose we

reviewed a system architecture that is based on R language and environment, and

outlined an example implementation that we later used in our example data analysis.

The presented example implementation provides a graphical working environment in

which the user can work with multiple images and models in an interactive manner.

The presented example data analysis of paper data began from a detailed study

of the available measurement images. Based on this study we were able to conclude

that the studied paper images can be decomposed into a deterministic component,

which contains regular patters such as wire pattern, and a stochastic component,

which contains for example the stochastic distribution of pulp. It was then shown

that the stochastic component can effectively be modeled with parametric Gaussian
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random field models. These models were used to characterize the studied paper im-

ages with only a few scalar values. With these values we were able to quantify the

stochastic nature and spatial scale of the five studied paper properties in a spatially

interpretable manner. Then we studied the dependencies between the paper prop-

erties with correlograms and with the proposed CCA correlation measures. Based

on the obtained results we were able to compare the two studied paper types and

the five paper properties, and to make an evaluation of the three spatial correlation

measures that are studied in this thesis.

The four cornerstones of the thesis: the paper application, the proposed

methodology, the example implementation, and the example data analysis, consti-

tute a versatile study of problems and their example solutions that we encountered

in our own work. The employed manner of presentation is aimed not to be lim-

ited to theoretical discussion without a contact to real world nor to solving a real

world application without understanding the theoretical foundations, but rather the

presentation tries to merge both views in a harmonious way with the objective of

attracting interest from both traditionally separate disciplines.
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7 YHTEENVETO (SUMMARY IN FINNISH)

Tämän työn tavoitteena on tutkia monipuolisesti spatiaalisia korrelaatioita

jotka esiintyvät stokastisia rakenteita sisältävien kuvien välillä. Näiden kuvien

taustalla oletetaan olevan spatiaalinen stokastinen prosessi joka generoi kuvat siten

että jokainen kuva ilmentää tämän prosessin ominaisuuksia. Tämän prosessin ym-

märtämiseksi meidän täytyy löytää keinoja joilla useista kuvista saatava informaatio

voidaan yhdistää prosessia parhaiten kuvaavalla tavalla. Käytännössä tämä tapah-

tuu laajentamalla perinteisen tilastollinen päättelyn työkaluja moniulotteiseen spa-

tiaaliseen data-analyysiin sopiviksi.

Esitetty työ on motivoitu ja kerrottu paperiteollisuudesta saadun käytännön

ongelman kautta. Tämän ongelman ratkaisun tavoitteena on suunnitella koe jonka

avulla voidaan selvittää riippuvuuksia paperin ominaisuuksien välillä. Tässä työssä

tutkitut ominaisuudet ovat paperin etu ja kääntöpuolen pintaprofiili sekä massa-,

paksuus- ja tiheysjakaumat. Yhteistyökumppaniltamme saatu datajoukko sisältää

näiden paperiominaisuuksien mittaukset kahdeksasta paperiarkista jotka edustavat

kahta selvästi erilaista paperityyppiä. Koe on suunniteltu siten että sen avulla

voidaan tutkia samanlaisuuksia saman paperityypin sisällä ja erilaisuuksia eri pa-

perityyppien välillä.

Uuden menetelmän kehitys alkoi alustavan tutkimuksen osoitettua perinteisen

yksittäisiin pikseleihin perustuvan menetelmän riittämättömyyden paperikuvien

analyysissä. Toisaalta kuvissa esiintyvä stokastinen rakenne ja kuvien suuri koko

saivat meidän epäilemään että kuvien käsittely kokonaisina olisi liian kompleksinen

tehtävä. Näiden lähestymistapojen sijaan esitimme että kuvat jaettaisiin pienem-

miksi ja yksinkertaisemmiksi alikuviksi jolloin edellä mainittuja lähestymistapoja

vaivaavat teoreettiset ja laskennalliset ongelmat on helpompi ratkaista. Alikuvien

käyttöön perustuva esitetty menetelmä mittaa kahden kuvan välillä esiintyvän riip-

puvuuden määrää yhdellä skalaariluvulla. Tälle luvulle saadaan menetelmästä luot-

tamusvälit joiden avulla on mahdollista arvioida saatua tulosta. Tämän lisäksi ja

oleellisena osana menetelmää ehdotimme neljää visualisointitekniikkaa.

Esitetyn menetelmän arvioimiseksi ja käytännön ongelmasta saadun mittaus-

aineiston analysoimiseksi on menetelmä implementoitu tietokoneella. Tähän liit-

tyen kävimme läpi järjestelmäarkkitehtuurin joka perustuu R-kieleen ja laskenta

ympäristöön, luonnostelimme esimerkki-implementaation jota myöhemmin käytet-

tiin esimerkki data-analyysissä. Esitetty esimerkki-implementaatio tarjoaa graafisen

työpöydän jonka avulla käyttäjä voi työskennellä interaktiivisesti useiden kuvien ja

mallien kanssa.

Esitetty esimerkki data-analyysi paperikuville alkoi hankittuihin mittausku-

viin perehtymällä. Tämän perusteella saatoimme päätellä että tutkittujen kuvien

rakenteet voidaan jakaa deterministiseen komponenttiin, joka sisältää säännöllisiä

rakenteita kuten viiran rakenne, ja stokastiseen komponenttiin, joka sisältää esi-

merkiksi stokastisen paperimassan jakauman. Tämän jälkeen osoitimme että tämä
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stokastinen komponentti voidaan mallintaa tehokkaasti parametristen Gaussisten

satunnaiskenttien avulla. Näiden mallien avulla saatoimme määrittää tutkituissa

paperin ominaisuuksissa esiintyvät stokastiset rakenteet ja näiden skaalat spatiaali-

sesti tulkittavassa muodossa. Analyysin seuraavassa vaiheessa tutkimme paperiomi-

naisuuksien välisiä riippuvuuksia korrelogrammin ja esitetyn CCA korrelaatiomitan

kautta. Saatujen tulosten perusteella saatoimme tehdä vertailua eri paperityyppien

ja tutkittujen paperin ominaisuuksien välillä, ja samalla arvioida kolmen erilaisen

tässä työssä käytetyn spatiaalisen korrelaatiomitan ominaisuuksia.

Tämän työn neljä tukijalkaa: sovellus paperin rakenteesta, esitetty menetelmä,

esimerkki-implementaatio ja esimerkki data-analyysi muodostavat monipuolisen

näkökulman meidän omassa työssämme esiintyneisiin ongelmiin ja niiden esimerkki-

ratkaisuihin. Käytetty esitystapa ei rajoitu teoreettiseen pohdintaan eikä pelkän

käytännön ongelman ratkaisuun vailla riittävää menetelmällistä ymmärrystä, vaan

pyrkii yhdistämään molempia näkökulmia tasapainoisesti tavoitteenaan herättää

kiinnostusta molemmissa perinteisesti erillisissä koulukunnissa.
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A PARAMETRIC MODELING OF PAPER IM-

AGES

In this appendix we review the results of fitting three parametric Gaussian

random field models to our paper images. For a detailed description of the paper

images, image preprocessing, and modeling procedures, read chapter 5.
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FIGURE 45: Semivariograms for background topographies. Columns indicate the

employed parametric model: spherical (left), exponential (center), and hyperbolic

(right). Rows indicate the studied sheet: A1 (top), A2, A3, B1, B2, and B3 (bot-

tom). For interpretation see section 5.2.
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Transition in pixels

S
em

iv
ar

io
gr

am

Theoretical
Empirical

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0
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FIGURE 46: Semivariograms for foreground topographies. Columns indicate the

employed parametric model: spherical (left), exponential (center), and hyperbolic

(right). Rows indicate the studied sheet: A1 (top), A2, A3, B1, B2, and B3 (bot-

tom). For interpretation see section 5.2.
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FIGURE 47: Semivariograms for mass distributions. Columns indicate the employed

parametric model: spherical (left), exponential (center), and hyperbolic (right).

Rows indicate the studied sheet: A1 (top), A2, A3, B1, B2, and B3 (bottom).

For interpretation see section 5.2.
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Sheet B1: Hyperbolic model (s=7.507)
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Sheet B2: Spherical model (s=26.846)
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Sheet B2: Exponential model (s=11.292)
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Sheet B2: Hyperbolic model (s=6.564)
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Sheet B3: Spherical model (s=25.638)
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Sheet B3: Exponential model (s=10.736)
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Sheet B3: Hyperbolic model (s=6.213)
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FIGURE 48: Semivariograms for thickness distributions. Columns indicate the

employed parametric model: spherical (left), exponential (center), and hyperbolic

(right). Rows indicate the studied sheet: A1 (top), A2, A3, B1, B2, and B3 (bot-

tom). For interpretation see section 5.2.
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Sheet A1: Spherical model (s=4.682)
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Sheet A1: Exponential model (s=2.039)
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Sheet A1: Hyperbolic model (s=0.837)
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Sheet A2: Spherical model (s=4.751)
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Sheet A2: Exponential model (s=2.065)
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Sheet A2: Hyperbolic model (s=0.835)
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Sheet A3: Spherical model (s=5.249)
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Sheet A3: Exponential model (s=2.251)
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Sheet A3: Hyperbolic model (s=0.924)
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Sheet B1: Spherical model (s=4.208)
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Sheet B1: Exponential model (s=1.754)
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Sheet B1: Hyperbolic model (s=0.715)
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Sheet B2: Spherical model (s=4.107)
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Sheet B2: Exponential model (s=1.735)
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Sheet B2: Hyperbolic model (s=0.701)
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Sheet B3: Spherical model (s=4.039)
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Sheet B3: Exponential model (s=1.694)
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Sheet B3: Hyperbolic model (s=0.675)
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FIGURE 49: Semivariograms for density distributions. Columns indicate the em-

ployed parametric model: spherical (left), exponential (center), and hyperbolic

(right). Rows indicate the studied sheet: A1 (top), A2, A3, B1, B2, and B3 (bot-

tom). For interpretation see section 5.2.


